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Abstract

The effect of the antidepressant doxepin on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in  
PC3 human prostate cancer cells was explored.  The Ca2+-sensitive fluorescent dye fura-2 was applied  
to measure [Ca2+]i.  Doxepin at concentrations of 500-1000 µM induced a [Ca2+]i rise in a concentration- 
dependent manner.  The response was reduced partly by removing Ca2+.  Doxepin-evoked Ca2+ entry 
was suppressed by Ca2+ entry blockers (nifedipine, econazole, SK&F96365), and protein kinase C (PKC) 
modulators.  In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+  
pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) partly inhibit doxepin-induced 
[Ca2+]i rise.  Incubation with doxepin nearly inhibited thapsigargin or BHQ-induced [Ca2+]i rise.  Inhi- 
bition of phospholipase C (PLC) with U73122 failed to alter doxepin-induced [Ca2+]i rise.  At con- 
centrations of 200-250 µM, doxepin killed cells in a concentration-dependent manner.  This cytotoxic 
effect was not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-
tetraacetic acid/acetoxy methyl (BAPTA/AM).  Annexin V/PI staining data implied that doxepin (200  
and 250 µM) did not induce apoptosis.  Collectively, in PC3 cells, doxepin induced a [Ca2+]i rise by  
evoking PLC-independent Ca2+ release from stores including the endoplasmic reticulum and Ca2+  
entry via PKC-sensitive store-operated Ca2+ channels.  Doxepin caused cell death that was independent  
of [Ca2+]i rises.

Key Words:	 Ca2+, doxepin, endoplasmic reticulum, human prostate cancer cells, phospholipase C, 
protein kinase C
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Introduction

Doxepin is a tricyclic antidepressant which might  
affect both serotonin and norepinephrine neurotrans- 
mission (36).  The indications of doxepin are major  
depressive disorder, nocturnal enuresis, panic disorder,  
irritable bowel syndrome, migraine, chronic pain, neu- 
ralgia, and symptoms of attention-deficit/hyperactivity  
disorder (14).  The effects of doxepin on histaminergic  
and 5-HT2A receptors may be responsible for its sleep- 
improving effect (31).  The most common side effects  
include dry mouth, sedation, constipation, increased 
appetite, and a rapid or irregular heartbeat.

The in vitro effect of doxepin is largely unclear.   
It has been shown that doxepin caused toxicity in 
dorsal root ganglion  cells (16) and inhibited respi-
ration of malignant glioma cells (18).  Additionally, 
doxepin was shown to inhibit the HERG potassium 
channel (12), neuronal sodium channels (25), three 
subtypes of GABA transporter (24), cyclic AMP pro- 
duction (17), and monoamine oxidase (28).  Regarding  
Ca2+ signaling, it has been shown that H1 histamine 
receptor antagonist doxepin inhibited the histamine-
induced [Ca2+]i rise in Jurkat cells and cloned human  
T lymphocytes (23).

Ca2+ ions play a crucial role in different bio- 
logical responses.  A rise in intracellular free Ca2+  
concentrations ([Ca2+]i) can initiate many pathophysio- 
logical cellular processes (1).  However, a unregulated  
[Ca2+]i rise may cause ion flux, dysfunction of pro- 
teins, apoptosis, and proliferation, etc. (9).  In order  
to explore the effect of doxepin on [Ca2+]i in cells, 
the PC3 human prostate cancer cells were chosen.  
The PC3 cell line is commonly applied for prostate 
cancer research.  It has been shown that in this cell, 
[Ca2+]i can increase in response to the stimulation  
of various ligands such as MK-886 (19), desipramine  
(5), and safrole (4).  Because doxepin may have 
pathophysiological effect in different cell types, our 
study was aimed to explore the effect of doxepin on 
PC3 cells.

Fura-2 was used as a fluorescent Ca2+-sensitive  
dye to measure [Ca2+]i changes in the present study.  
It was shown that doxepin induced both Ca2+ entry 
and Ca2+ release in PC3 cells.  The [Ca2+]i rises were  
characterized, the concentration-response plots were  
established, and the pathways underlying doxepin-
evoked Ca2+ entry and Ca2+ release were explored.  
The effect of doxepin on cell viability was investi-
gated by using the tetrazolium assay.  The involve-
ment of apoptosis was explored by using Annexin 
V/propidium iodide staining.

Materials and Methods

Materials

The reagents for cell culture were from Gibco®  
(Gaithersburg, MD, USA).  Fura-2/AM and 1,2-bis(2- 
aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/
acetoxy methyl (BAPTA/AM) were from Molecular  
Probes® (Eugene, OR, USA).  Doxepin and all other  
reagents were from Sigma-Aldrich® (St. Louis, MO,  
USA) unless otherwise indicated.  The concentrations  
chosen for nifedipine, econazole, SK&F96365, PMA,  
GF109203X, thapsigargin, BHQ, U73122, and ATP were  
based on literature and were effective in interacting 
with the targets of these chemicals.

Cell Culture

PC3 human prostate cancer cells, MG63 human  
osteosarcoma cells and DBTRG-05MG human glio-
blastoma cells obtained from Bioresource Collection  
and Research Center (Taiwan) were cultured in RPMI- 
1640 medium or Minimum Essential Medium (MEM) 
supplemented with 10% heat-inactivated fetal bovine  
serum, 100 U/ml penicillin and 100 µg/ml strepto-
mycin.

Solutions Used in [Ca2+]i Measurements

Ca2+-containing medium (pH 7.4) had 140 mM  
NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM  
HEPES, and 5 mM glucose.  Ca2+-free medium con- 
tained similar components as Ca2+-containing medium  
except that CaCl2 was omitted and 2 mM MgCl2/0.3 
mM ethylene glycol tetraacetic acid (EGTA) were 
added.  Doxepin was dissolved in water as a 1 M 
stock solution.  The other chemicals were dissolved 
in water, ethanol or dimethyl sulfoxide.  The con-
centration of organic solvents in the solution used 
in experiments did not exceed 0.1%, and did not 
alter viability, basal [Ca2+]i, or apoptosis measure-
ments.

[Ca2+]i Measurements

Confluent cells grown on 6 cm dishes were 
trypsinized and made into a suspension in culture 
medium at a density of 106/ml.  Cell viability was 
determined by trypan blue exclusion.  The viability 
was usually greater than 95% after the treatment.  
Cells were subsequently loaded with 2 µM fura-2/
AM for 30 min at 25°C in the same medium.  After 
loading, cells were washed with Ca2+-containing 
medium twice and was made into a suspension in  
Ca2+-containing medium at a density of 107/ml.  Fura-2  
fluorescence measurements were performed in a water- 
jacketed cuvette (25°C) with continuous stirring; the  
cuvette contained 1 ml of medium and 0.5 million 
cells.  Fluorescence was monitored with a Shimadzu  
RF-5301PC spectrofluorophotometer immediately  
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after 0.1 ml cell suspension was added to 0.9 ml Ca2+- 
containing or Ca2+-free medium, by recording excita- 
tion signals at 340 nm and 380 nm and emission signal  
at 510 nm at 1-sec intervals.  During the recording, 
reagents were added to the cuvette by pausing the 
recording for 2 sec to open and close the cuvette-
containing chamber.  For calibration of [Ca2+]i, after 
completion of the experiments, the detergent Triton 
X-100 (0.1%) and CaCl2 (5 mM) were added to the 
cuvette to obtain the maximal fura-2 fluorescence.   
Then the Ca2+ chelator ethylene glycol tetraacetic acid  
(10 mM) was added to chelate Ca2+ in the cuvette to  
obtain the minimal fura-2 fluorescence.  [Ca2+]i was 
calculated as previously described (6-8, 15).  Cell vi-
ability remained >95% after 20 min of [Ca2+]i mea- 
surements.

Cell Viability Assays

The measurement of cell viability was based 
on the ability of cells to cleave tetrazolium salts by 
dehydrogenases.  Augmentation in the amount of 
developed color directly correlated with the number 
of live cells.  Assays were performed according to 
manufacturer’s instructions designed for this assay  
(Roche Molecular Biochemical, Indianapolis, IN,  
USA).  Cells were seeded in 96-well plates at a density  
of 10,000 cells/well in culture medium for 24 h in 
the presence of doxepin.  The cell viability detect-
ing reagent 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-
2H-5-tetrazolio-1,3-benzene disulfonate] (WST-1;  
10 µl pure solution) was added to samples after doxepin  
treatment, and cells were incubated for 30 min in a  
humidified atmosphere.  In experiments using BAPTA/ 
AM to chelate cytosolic Ca2+, cells were treated with  
10 µM BAPTA/AM for 1 h prior to incubation with 
doxepin.  The cells were washed once with Ca2+-
containing medium and incubated with/without 
doxepin for 24 h.  The absorbance of samples (A450)  
was determined using an enzyme-linked immunosor- 
bent assay (ELISA) reader.  Absolute optical density  
was normalized to the absorbance of unstimulated 
cells in each plate and expressed as a percentage of 
the control value.

Alexa ®Fluor 488 Annexin V/PI Staining for  
Detection of Apoptosis

Annexin V/PI staining assay (7, 37) was em-
ployed to further detect PC3 cells in early apoptosis/ 
necrosis stages.  Alexa Fluor® 488 Annexin V/Dead 
Cell Apoptosis Kit was from Molecular Probes® 
(Eugene, OR, USA).  Cells were exposed to doxepin  
at several concentrations for 24 h.  Cells were har- 
vested after incubation and washed in cold phosphate- 
buffered saline (PBS).  Cells were resuspended in 400  

µl reaction solution with 10 mM of HEPES, 140 mM  
of NaC1, 2.5 mM of CaC12 (pH 7.4).  Alexa Fluor® 488  
annexin V/PI staining solution was added in the dark.   
After incubation for 15 min, the cells were collected  
and analyzed in a FACScan flow cytometry analyzer.   
Excitation wavelength was at 488 nm and the emitted  
green fluorescence of Annexin V (FL1) and red fluo- 
rescence of PI (FL2) were collected using 530 nm 
and 575 nm band pass filters, respectively.  A total 
of at least 20,000 cells were analyzed per sample.   
Light scatter was measured on a linear scale of 1024  
channels and fluorescence intensity was on a logarith- 
mic scale.  The amount of early apoptosis and late 
apoptosis/necrosis were determined, respectively, as  
the percentage of Annexin V+/PI– or Annexin V+/PI+  
cells.

Statistics

Data are reported as mean ± SEM of three sepa- 
rate experiments.  Data were analyzed by one way 
analysis of variances (ANOVA) using the Statistical  
Analysis System (SAS®, SAS Institute Inc., Cary, 
NC, USA).  Multiple comparisons between group 
means were performed by post-hoc analysis using 
the Tukey’s HSD (honestly significantly difference) 
procedure.  A P-value less than 0.05 was considered 
significant.

Results

Effect of Acute Treatment with Doxepin on [Ca2+]i in 
PC3 Cells but not in MG63 Cells and DBTRG-05MG 
Cells

The effect of doxepin on basal [Ca2+]i was ex-
amined.  Fig. 1A shows that the basal [Ca2+]i level 
was 51 ± 2 nM.  At concentrations between 500 and  
1000 µM, doxepin induced a [Ca2+]i rise in a con-
centration-dependent manner in Ca2+-containing 
medium.  At a concentration of 1000 µM, doxepin 
evoked a [Ca2+]i rise that attained to a net increase  
of 80 ± 2 nM (n = 3) followed by a slow decay.  The  
Ca2+ response saturated at 1000 µM doxepin because  
1250 µM doxepin did not evoke a greater response.  
Fig. 1B shows that in the absence of extracellular 
Ca2+, 1000 µM doxepin induced a [Ca2+]i rise of  
55 ± 2 nM; and at a concentration of 750 µM, doxepin  
induced a [Ca2+]i rise of 40 ± 2 nM.  Fig. 1C shows 
the concentration-response plots of doxepin-induced  
responses.  The EC50 value was 400 ± 2 µM or 760 ±  
2 µM in the presence or absence of external Ca2+ by 
fitting to a Hill equation.  Fig. 1D shows that dox-
epin between 100 μM and 1000 μM did not evoke a 
[Ca2+]i rise in other cell types including MG63 cells 
and DBTRG-05MG cells.
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Effect of Ca2+ Channel Modulators on Doxepin-Induced 
[Ca2+]i Rise 

Fig. 1 shows that doxepin-induced Ca2+ response  
saturated at 1000 μM; thus in the following experi-
ments the response induced by 1000 µM doxepin 
was used as control.  Experiments were conducted 
to explore the Ca2+ entry pathway of the doxepin-
induced [Ca2+]i rise.  The store-operated Ca2+ entry 
inhibitors: nifedipine (1 µM), econazole (0.5 µM) 
and SK&F96365 (5 µM); phorbol 12-myristate 13 
acetate (PMA; 1 nM; a protein kinase C activator); 
and GF109203X (2 µM; a protein kinase C (PKC) 
inhibitor) were applied 1 min before doxepin.  Ad-
dition of these chemicals (nifedipine, econazole, 
SK&F96365, PMA, GF109203X) alone did not alter 
baseline [Ca2+]i (data not shown).  These agents all 
significantly inhibited doxepin-induced [Ca2+]i rise  
to different degree (Fig. 2).

Intracellular Store for Doxepin-Induced Ca2+ Release

Previous studies have shown that the endoplasmic  
reticulum is the major Ca2+ store in PC3 cells (4, 9).   
Fig. 3A shows that in Ca2+-free medium, addition  
of 1000 µM doxepin induced a [Ca2+]i rise of 50 ± 2  
nM.  Thapsigargin (1 µM), an inhibitor of endoplasmic  
reticulum Ca2+ pumps (32) was added afterwards.   
Thapsigargin failed to evoke a [Ca2+]i rise (n = 3).   
Fig. 3B shows that addition of thapsigargin induced  
a [Ca2+]i rise of 15 ± 2 nM (n = 3).  Doxepin added 
afterwards induced a [Ca2+]i rise of 45 ± 1 nM (n = 3) 
which was 10% smaller in the peak value (P < 0.05) 
than the control doxepin-induced response shown in 
Fig. 3A.  To confirm the thapsigargin’s data, another  
endoplasmic reticulum Ca2+ pump inhibitor 2,5-di- 
tert-butylhydroquinone (BHQ) (35) was used in similar  
experiments.  Fig. 3C shows that BHQ added after 
doxepin induced a tiny transient [Ca2+]i rise.  Fig. 3D  

Fig. 1.	 Doxepin-induced [Ca2+]i rises in PC3 cells.  (A) Effect of doxepin on [Ca2+]i in Ca2+-containing medium.  Doxepin was 
added at 25 sec.  The concentration of doxepin was indicated.  (B) Effect of doxepin on [Ca2+]i in the absence of extracel-
lular Ca2+.  Doxepin was added at 25 sec in Ca2+-free medium.  (C) Concentration-response plots of doxepin-induced [Ca2+]i 
rises in the presence or absence of extracellular Ca2+.  Y axis is the percentage of the net (baseline subtracted) area under the 
curve (25-220 sec) of the [Ca2+]i rise induced by 1000 µM doxepin in Ca2+-containing medium.  Data are mean ± SEM of 
three separate experiments.  *P < 0.05 compared to open circles.  (D) Doxepin (100-1000 μM) did not induce a [Ca2+]i rise 
in MG63 human osteosarcoma cells and DBTRG-05MG human glioblastoma cells.  Data are mean ± SEM of three separate 
experiments.
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shows that BHQ induced a [Ca2+]i rise of 45 ± 1 nM.   
Fig. 3D further shows that addition of doxepin after 
BHQ evoked a [Ca2+]i rise of 40 ± 1 nM which was 
smaller than the control doxepin-induced response 
by 20%.

Lack of a Role of Phospholipase C (PLC) in  
Doxepin-Induced Ca2+ Release

PLC-dependent production of inositol 1,4,5- 
trisphosphate is a key process for releasing Ca2+ from  
the endoplasmic reticulum (1).  Because doxepin re- 
leased Ca2+ from the endoplasmic reticulum, the role  
of PLC in this event was examined.  U73122, a PLC  
inhibitor (33), was used to see whether the activation  
of this enzyme was required for doxepin-induced Ca2+  
release.  It has been shown that ATP influenced bio-
logical processes via P2X purinoreceptors (3).  P2X  
purinoreceptors are agonist-gated ion channels, while  
several P2Y receptors activate intracellular Ca2+ stores  
(2).  Previous studies showed that ATP was used as a  
PLC-dependent agonist of [Ca2+]i rise via P2X purino- 
receptors in PC3 cells (3, 21).  Therefore this study 
chose ATP to examine the role of PLC in PC3 cells.   
Fig. 4A shows that ATP (10 µM) induced a [Ca2+]i  
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Fig. 2.	 Effect of Ca2+ channel modulators on doxepin-induced 
[Ca2+]i rise.  In blocker- or modulator-treated groups, 
the reagent was added 1 min before doxepin (1000  
µM) in Ca2+-containing medium.  The concentration was  
1 µM for nifedipine, 0.5 µM for econazole, 5 µM for 
SK&F96365, 10 nM for phorbol 12-myristate 13-acetate  
(PMA), and 2 µM for GF109203X.  Data are expressed  
as the percentage of control (1st column) that is the maxi- 
mum value of 1000 µM doxepin-induced [Ca2+]i rise, 
and are mean ± SEM of three separate experiments.  
*P < 0.05 compared to the 1st column.

P
er

ce
nt

ag
e 

of
 C

on
tro

l R
es

po
ns

e

0

20

40

60

80

100

Dox
ep

in

Nife
dip

ine
+D

ox
ep

in

*

PM
A+

Dox
ep

in

GF1
09

20
3X

+D
ox

ep
in

Ec
on

az
ole

+D
ox

ep
in

SK
F9

63
65

+D
ox

ep
in

*
* * *



	 Effect of Doxepin on Prostate Cancer Cells	 183

rise of 51 ± 2 nM.  Fig. 4B shows that incubation with  
2 µM U73122 did not change basal [Ca2+]i but abol-
ished ATP-induced [Ca2+]i rise.  This suggests that  
U73122 effectively suppressed PLC activity.  Fig. 4B  

also shows that incubation with 2 µM U73122 did not  
alter basal [Ca2+]i or doxepin-induced [Ca2+]i rise.   
U73343 (2 µM), a U73122 analogue, failed to have an  
inhibition on ATP-induced [Ca2+]i rise (not shown).

Fig. 4.	 Effect of U73122 on doxepin-induced Ca2+ release.  Experiments were performed in Ca2+-free medium.  (A) ATP (10 µM) was  
added as indicated.  (B) U73122 (2 µM), ATP (10 µM), and doxepin (1000 µM) were added as indicated.  Data are mean ± 
SEM of three separate experiments.
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ment.  Previous studies showed that BAPTA/AM pre- 
treatment at 10 µM abolished [Ca2+]i rises in different  
cell types (10).  In our study, Fig. 5A shows that 10 µM  
BAPTA/AM loading for 1 h abolished 1000 µM doxepin- 
induced [Ca2+]i rise in Ca2+-containing medium.  Fur- 
thermore, 10 µM BAPTA/AM loading for 25 h also  
had the same results (data not shown).  Therefore This  
suggests that BAPTA/AM effectively prevented a rise in  
[Ca2+]i during doxepin treatment.  Fig. 5B shows that  
10 µM BAPTA/AM loading did not alter the control 
value of cell viability.  BAPTA/AM loading did not 
reverse doxepin-induced changes in cell viability.

A Role of Apoptosis in Doxepin-Induced Cell Death

Because the cytotoxic response was most sig- 
nificant between 200 μM and 250 μM doxepin, these  
concentrations were chosen for apoptotic experiments.   
Annexin V/propidium iodide staining was applied to  
detect apoptotic cells after doxepin treatment.  Figs. 6A  

Effect of Doxepin on Cell Viability

Given that acute incubation with doxepin induced  
a substantial and lasting [Ca2+]i rise, and that unregu- 
lated [Ca2+]i rise often alters cell viability (9), experi- 
ments were performed to examine the effect of doxepin  
on viability of PC3 cells.  Cells were treated with 0-250  
µM doxepin for 24 h, and the tetrazolium assay was  
performed.  In the presence of 100 µM doxepin, cell  
viability increased by 30 ± 2%.  In the presence of 200  
or 250 µM doxepin, viability decreased in a concen- 
tration-dependent manner (Fig. 5).

Relationship between BAPTA/AM and Doxepin-Induced 
Changes in Viability

The next issue was whether the doxepin-induced  
changes in viability was caused by a preceding [Ca2+]i  
rise.  The intracellular Ca2+ chelator BAPTA/AM (34)  
was used to prevent a [Ca2+]i rise during doxepin treat- 

Fig. 6.	 Apoptosis induced by doxepin measured by Annexin V/PI staining.  A. PC3 cells were treated with 0, 200 µM or 250 µM 
doxepin, respectively, for 24 h.  Cells were then processed for Annexin V/PI staining and analyzed by flow cytometry.  B. 
The percentage of apoptotic cells.  *, #P < 0.05 compared to corresponding control.
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and 6B show that treatment with 200 µM or 250 µM  
doxepin did not induce significant apoptosis in PC3 
cells.

Discussion

The effect of doxepin on Ca2+ signaling in cells  
has not been explored in any cell types.  Our study 
shows that doxepin induced a [Ca2+]i rise in PC3 hu-
man prostate cancer cells and examined the under-
lying mechanisms.  This is the first report to show  
that doxepin increases [Ca2+]i in a cultured cell model.   
The data show that doxepin induced a concentration- 
dependent [Ca2+]i rise by depleting intracellular Ca2+  
stores and causing Ca2+ entry from extracellular solu- 
tion because removing extracellular Ca2+ partly de-
creased doxepin-induced [Ca2+]i rise.  In PC3 cells, 
about 66% of 1000 µM doxepin-evoked [Ca2+]i rise  
was caused by Ca2+ release.  In contrast, our data show  
that doxepin at a concentration of up to 1000 µM did  
not induce a [Ca2+]i rise in MG63 cells and DBTRG- 
05MG cells.  This suggests that doxepin-induced rise  
in [Ca2+]i in PC3 cells is a noteworthy phenomenon.

The mechanism of doxepin-induced Ca2+ influx  
was explored.  The results implicate that doxepin might  
induce Ca2+ influx via triggering store-operated Ca2+  
entry, which is caused by depletion of intracellular  
Ca2+ stores (26), based on the inhibition of doxepin- 
induced [Ca2+]i rise by nifedipine, econazole and 
SK&F96365.  So far there are no selective blockers 
for this type of Ca2+ entry.  These three compounds  
have often been applied to inhibit store-operated Ca2+  
entry in different cell types (20, 22, 27, 29).  Because  
activation of PLC produces IP3 and diacylglycerol,  
which stimulates PKC, the effect of regulation of PKC  
activity on doxepin-induced [Ca2+]i rise was examined.   
Both activation and inhibition of PKC inhibited doxepin- 
induced [Ca2+]i rise.  This suggests that a normal PKC  
activity is required for a full scale doxepin-induced 
[Ca2+]i signal.

Regarding the Ca2+ stores involved in doxepin- 
induced Ca2+ release, the thapsigargin/BHQ-sensitive  
endoplasmic reticulum stores might be the dominant  
store because thapsigargin/BHQ pretreatment both 
greatly inhibited doxepin-induced [Ca2+]i rise; and  
conversely, doxepin pretreatment also inhibited 
thapsigargin/BHQ-induced Ca2+ release.  Since 
thapsigargin/BHQ treatment did not abolish doxepin- 
induced Ca2+ release, doxepin may release Ca2+ not only  
from endoplasmic reticulum, but also from other stores  
such as mitochondria, lysosomes, cytoskeleton, etc.  
However, it is difficult to explore this possibility 
because so far there are no chemicals to selectively 
release Ca2+ from these stores.  It seems that PLC-
dependent pathways did not play a significant role 
in doxepin-induced Ca2+ release, since the response 

was not inhibited when PLC activity was inhibited.   
Thus it appears that doxepin-induced Ca2+ release was  
caused by a PLC-independent Ca2+ release from the 
stores.  The identity of this Ca2+ release is unclear.  It  
is possible that doxepin could mimic thapsigargin/
BHQ by inhibiting endoplasmic reticulum Ca2+ 
pump.

Doxepin has been shown to induce cell death 
in cultured dorsal root ganglion cells and malignant 
glioma (16, 18).  This study shows that doxepin had 
a dual effect on viability of PC3 cells.  At 100 µM,  
doxepin induced a 30% increase in viability.  At higher  
concentrations of 200 and 250 µM doxepin, viability  
was decreased in a concentration-dependent manner.

It appears problematic that 1000 µM doxepin was  
required to induce a full blown [Ca2+]i rise while 250  
µM doxepin already caused death of 70% of cells.  
Note that [Ca2+]i measurements and viability were  
two totally different assays.  [Ca2+]i measurements were  
conducted online and terminated within 4-15 min.  
After 20 min incubation with doxepin, cell viability  
was still >95%.  In contrast, in viability assays, cells  
were treated with doxepin overnight in order to ob- 
tain measurable changes in viability.  This is why 250  
µM doxepin decreased cell viability in the tetrazolium  
assay by 70% whereas 1000 µM doxepin did not alter  
viability in [Ca2+]i measurements.

Because doxepin induced both [Ca2+]i rises and  
cell death, it would be interesting to know whether 
the death occurred in a Ca2+-dependent manner.  
Chelation of cytosolic Ca2+ with BAPTA/AM did not  
reverse doxepin-induced changes in cell viability.  In- 
deed, chelation of cytosolic Ca2+ even antagonized doxe- 
pin’s action.  This implies that in this case, doxepin’s  
effect on cell viability was not downstream to a [Ca2+]i  
rise.  However, a Ca2+ signal can modulate cell via- 
bility in many cell types (9).  It has been shown that  
Ca2+-independent cell death could be found in some  
cell types such as macrophages (11) and human ovarian  
carcinoma cells (30).  Although 250 μM doxepin caused  
cell death by 65% in viability experiments, the same  
concentration of doxepin did not induce significant 
apoptosis.  Because Annexin V/PI staining showed 
a very low percentage of apopotic cells (3%), it ap- 
pears that cell membrane was not disrupted.  Doxepin  
induced cell death as indicated by the tetrazolium 
assay; however, this is not accompanied by the up-
take of Annexin V/PI in the 24 h assay.  Thus it is 
possible that the significant loss of cell viability was  
through other pathways such as autophagy.

Due to the rather high (hundreds of µM) con-
centrations of doxepin needed to induce a [Ca2+]i 
rise and cell death, one logic concern is the clinical 
significance of our data.  A previous study explored 
the plasma concentration of doxepin after oral ad-
ministration.  The doses administered were 25 and 



186	 Lu, Chou, Liang, Yu, Chang, Kuo, Chen, Kuo, Ho, Shieh and Jan

75 mg/day in healthy adults.  No BioResponse (BR)  
doxepin-related adverse effects were reported at doses  
up to 75 mg.  A single 25 mg dose of BR-doxepin re- 
sulted in a mean Cmax of ~ 200 μM after 4 h.  A single  
75 mg dose of BR-doxepin resulted in a mean Cmax 
of ~ 400 μM after 4 h.  BR-doxepin was well toler-
ated at single doses of up to 75 mg (13).  However, 
in depression patients, the plasma concentration of 
doxepin after oral administration might be 2-fold 
higher than in healthy adults.  Thus, our study may 
have clinical relevance.

Collectively, the results show that the antide- 
pressant doxepin induced Ca2+ release from stores in- 
cluding endoplasmic reticulum in a PLC-independent  
manner and also caused Ca2+ influx via a PKC-
dependent, store-operated Ca2+ entry in PC3 human 
prostate cancer cells.  Doxepin also evoked cell pro- 
liferation or death depending on the concentration.   
This effect was independent of [Ca2+]i rises.  The pos- 
sible effect on Ca2+ signaling and viability should be  
considered in performing other in vitro studies using  
doxepin.
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