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Abstract

The effect of Antrodia camphorata (AC) on human oral cancer cells has not been explored. This
study examined the effect of AC on the viability, apoptosis, mitogen-activated protein kinases (MAPKs)
phosphorylation and Ca?* regulation of OC2 human oral cancer cells. AC at a concentration of 25 uM
induced an increase in cell viability, but AC at concentrations = 50 ug/ml decreased viability in a
concentration-dependent manner. AC at concentrations of 100-200 ug/ml induced apoptosis in a
concentration-dependent manner as demonstrated by propidium iodide staining. AC (25 ug/ml) did not
alter basal [Ca®*];, but decreased the [Ca**]; increases induced by ATP, bradykinin, histamine and
thapsigargin. ATP, bradykinin, and histamine increased cell viability whereas thapsigargin decreased
it. AC (25 ug/ml) pretreatment failed to alter ATP-induced increase in viability, potentiated bradykinin-
induced increase in viability, decreased histamine-induced increase in viability and reversed thapsigargin-
induced decrease in viability. Immunoblotting suggested that AC induced phosphorylation of ERK and
JNK MAPKSs, but not p38 MAPK. Collectively, for OC2 cells, AC exerted multiple effects on their
viability and [Ca?*];, induced their ERK and JNK MAPK phosphorylation, and probably evoked their
apoptosis.
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Introduction Diverse effects of AC have been reported in different

in vitro and in vivo models, including anti-hepatitis

Antrodia camphorata (AC) is a Chinese herb B virus (19), antioxidation (10, 29); protection against

that has gained wide interests in recent years (4). hepatic toxicity in rats (13, 31); vasorelaxation via
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endothelial Ca?>*-NO-cGMP pathway (36), anti-
inflammation (11, 28), antitumor effects (21, 25, 27),
prevention of PC12 cells from serum deprivation-
induced apoptosis (15, 22), induction of the apoptosis
of human hepatoma cells (14, 32, 33), leukemia cells
(12), and breast cancer cells (37); inhibition of liver
fibrosis induced by carbon tetrachloride in rats (20).
Lastly, AC appears to have an in vitro neuroprotec-
tive effect (3).

Given the various effects of AC on different
models, the underlying mechanisms are unclear. A
change in cytosolic free Ca?* level ([Ca**];) is a pivotal
signal for various cellular responses (1), including
cell death (24). Another key player in many cellular
responses is the mitogen-activated protein kinases
(MAPKs). MAPKSs signaling cascades have been
shown to be important in the differentiation, activation,
proliferation, degranulation and migration of various
cell types (7). There are three big families of MAPKSs:
ERK, JNK and p38 MAPK (35); each of them plays
specific roles in numerous cellular phenomena. The
effect of AC on [Ca?*]; and MAPK phosphorylation
is unclear in any system.

Because AC has been shown to affect physiology
of cancer cells from different cell lines, the present
study was aimed to examine the effect of AC on the
viability, apoptosis, [Ca**];, and MAPK phosphoryla-
tion of human oral cancer cells (OC2). The effect of
AC on oral cancer cells had not been investigated.

Materials and Methods
Cell Culture

OC2 cells obtained from American Type Culture
Collection were cultured in Dulbecco’s modified Eagle
medium supplemented with 10% heat-inactivated fetal
bovine serum, 100 U/ml penicillin and 100 ug/ml
streptomycin.

Solutions

Ca%*-containing medium contained 140 mM
NaCl, 5 mM KCI, 1 mM MgCl,, 2 mM CaCl,, 10 mM
Hepes, 5 mM glucose, pH 7.4. AC was dissolved in
dimethyl sulfoxide as a stock solution. The other
agents were dissolved in water, ethanol or dimethyl
sulfoxide. The concentration of organic solvents in
the solution used in the experiments did not exceed
0.1%, and did not alter basal [Ca®*];.

[Ca** ]; Measurements
Trypsinized cells (10%/ml) were loaded with 2

uM fura-2/AM for 30 min at 25°C in the culture
medium. Fura-2 fluorescence measurements were

performed in a water-jacketed cuvette (25°C) with
continuous stirring; the cuvette contained 1 ml of
medium and 0.5 million cells. Fluorescence was
monitored with a Shimadzu RF-5301PC spectroflu-
orophotometer recording excitation signals at 340 nm
and 380 nm and emission signals at 510 nm at 1-sec
intervals. Maximum and minimum fluorescence
values were obtained by adding 0.1% Triton X-100
(plus 5 mM CaCl,) and 10 mM EGTA sequentially at
the end of each experiment. [Ca?*]; was calculated as
previously described (8).

Cell Viability Assays

The measurement of cell viability was based
on the ability of cells to cleave tetrazolium salts by
mitochondrial dehydrogenases. Augmentation in the
amount of developed color directly correlated with
the number of live cells. Assays were performed
according to the manufacturer’s instructions (Roche
Molecular Biochemical, Indianapolis, IN, USA). Cells
were seeded in 96-well plates at 10,000 cells/well in
the culture medium for 24 h in the presence of zero
or different concentrations of AC. The cell viability
detecting reagent WST-1 (4-[3-[4-lodophenyl]-2-4
(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disul-
fonate] (10 ul pure solution) was added to samples
after AC treatment, and cells were incubated for 30
min in a humidified atmosphere. The absorbance of
samples (Aysp) was determined using an enzyme-
linked immunosorbent assay (ELISA) reader.
Absolute optical density was normalized to the
absorbance of unstimulated cells in each plate and
expressed as a percentage of the control value. The
experiment was repeated five times in six replicates.

Assessments of MAPKs by Western Immunoblotting

Assessments of the phosphorylation of MAPKs
were accomplished by immunoblotting. Cell con-
centrations were adjusted to 3 x 10° cells/dish and
were seeded in 60 nm culture dishes. After 2 h of in-
cubation, the culture medium was replaced by a serum-
free medium supplemented with 1 mg/ml bovine serum
albumin (USB™, Cleveland, OH, USA) and serum
starvation was continued for 4 h, followed by an
addition of 200 ug/ml AC for indicated time periods.
The treatments were terminated by aspirating the
supernatant and washing the dishes with physiological
saline. After washing, the cells were lysed on ice for
5 min with 70 ul of lysis buffer (20 mM Tris, pH 7.5,
150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton,
2.5 mM sodium pyrophosphate, 1| mM p-glycero-
phosphate, 1 mM Na3z;VO,, 1 ug/ml leupeptin and 1
mM phenylmethylsulfonyl fluoride). The lysed cells
were scraped off the dish using a rubber policeman,
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transferred to microcentrifuge tubes, and vortexed
for 10 sec. The cell lysates were then centrifuged to
remove insoluble materials and the protein concentra-
tion of each sample was measured. Approximately 50
ug of supernatant protein from each sample was used
for gel electrophoresis analysis on a 10% SDS-
polyacrylamide gel. After electrophoresis, the frac-
tionated proteins on gel were transferred to PVDF
membranes (NEN™ Life Science Products, Inc.,
Boston, MA, USA). For immuoblotting, the mem-
branes were blocked with 5% non-fat milk in TBST
(25 mM Tris, pH 7.5, 150 mM NacCl, 0.1% (v/v)
Tween 20) and incubated overnight with the primary
antibody (rabbit anti-human phospho-ERK antibody,
rabbit anti-human ERK antibody, rabbit anti-human
phospho-JNK antibody, rabbit anti-human JNK
antibody, rabbit anti-human phospho-p38 MAPK
antibody, rabbit anti-human p38 MAPK antibody,
rabbit-anti human cleaved caspase-3 antibody or
rabbit-anti human f tubulin antibody; all from Cell
Signaling Technology, Beverly, MA, USA). Then
the membranes were extensively washed with TBST
and incubated for 60 min with the secondary antibody
(goat anti-rabbit antibody, Transduction Laboratories,
Lexington, KY, USA). After extensive washing with
TBST, the immune complexes were detected by
chemiluminescence using the Renaissance™ Western
Blot Chemiluminescence Reagent Plus kit (NEN™
Life Science Products, Inc., Boston, MA, USA).

Measurements of Subdiploidy Nuclei by Flow Cytometry

After treatment with various concentrations of
AC overnight, cells were collected from the media,
and were washed with ice-cold physiological saline
twice and resuspended in 3 ml of 70% ethanol. Then
cells are suspended in 70% ethanol and stored at
—20°C. The ethanol-suspended cells were centrifuged
for 5 min at 200 x g. Ethanol was decanted thoroughly
and the cell pellet was washed with ice-cold saline
twice, and was then suspended in 1 ml propidium
iodide (PI) solution (1% Triton X-100, 20 ug PI, 0.1
mg/ml RNase). The cell pellet was incubated in the
dark for 30 min at room temperature. Cell fluorescence
was measured in the FACScan flow cytometer (Becton
Dickinson immunocytometry systems, San Jose, CA,
USA) and the data were analyzed using the MODFIT
software.

Chemicals

The reagents for cell culture were from Gibco
(Gaithersburg, MD, USA). Fura-2/AM was from
Molecular Probes (Eugene, OR, USA). Propidium
iodide, dimethyl sulfoxide and other reagents were
from Sigma-Aldrich (St. Louis, MO, USA). AC was
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Fig. 1. Effect of AC on the viability of OC2 cells. Cells were
incubated with various concentrations of AC for 24 h.
Cell viability was determined by WST-1 assays. Data are
presented as means + SEM of the five experiments in
triplicate. *P < 0.05 compared with control.

a gift from Dintai Medical Co., Ltd. (Kaohsiung,
Taiwan, ROC).

Statistics

Data are reported as means = SEM of the five
experiments. Data were analyzed by two-way analysis
of variances (ANOVA) using the Statistical Analysis
System (SAS®, SAS Institute Inc., Cary, NC, USA)
on a personal computer powered by Intel Pentium
IV CPU at 1.8 GHz. Multiple comparisons between
group means were performed by post-hoc analysis
using the Tukey’s HSD (honestly significant dif-
ference) procedure. A P-value less than 0.05 was
considered significant.

Results

To examine the cytotoxicity of AC in human
oral cancer, OC2 cells were cultured in the presence
of 0-200 mg/ml AC and cell viability assays were
performed. Fig. 1 shows that while 25 ug/ml AC
significantly increased viability, 100-200 ug/ml AC
decreased viability in a concentration-dependent
manner (P < 0.05; n=05).

To examine the characteristics of cell death
observed in OC2 cells, we explored whether the apop-
totic features such as subdiploid peak were induced
by AC. As shown in Fig. 2, the marked increase in
subdiploidy nuclei appeared in cells treated with 100-
200 pug/ml AC in a concentration-dependent manner
(P <0.05;n=35). Figs. 2A and B show the effect of
200 ug/ml AC. Fig. 2C shows the concentration-
dependent effect of AC. In order to understand the
mechanisms of AC-induced apoptosis, efforts were
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Fig. 2. AC-induced apoptosis. After treatment with various concentrations of AC for 18 h, cells were examined for apoptosis by
using flow cytometry. (A) Control FACS data. (B) FACS data of 200 ug/ml AC. (C) A histogram showing the concentration-
dependent effect of AC. Data in (C) are presented as means + SEM of the five experiments. *P < 0.05 as compared to

control.

made to examine the effect of AC on [Ca*'];. It was
found that AC (5-200 ug/ml) failed to induce a
[Ca?*]; increase (n = 5; not shown).

Efforts were extended to explore the effect of
AC on the [Ca?*]; increases induced by four common
Ca?* mobilizers. Fig. 3A shows that basal [Ca”*]; was
50 =2 nM (n =5). Addition of ATP (10 uM) induced
an immediate [Ca®*]; increase followed by a gradual
decline. The peak [Ca”*]; was 131 = 1 nM over base-
line (trace a). After cells were pretreated with 25 ng/
ml AC for 2 min, addition of ATP induced a [Ca**];
increase with a peak of 82 + 1 nM (n = 5; Trace b),
which was smaller than Trace a by 59% (P < 0.05).
The interaction of AC and ATP on viability was also
explored. Fig. 3B shows that overnight incubation
with 10 uM ATP induced an increase in viability by
20 = 2% (P < 0.05; n=5). Incubation with 25 ug/ml
AC and ATP did not alter ATP-induced enhancement
in viability (P > 0.05; n = 5).

Fig. 4A shows that addition of bradykinin (10
nM) induced an immediate [Ca®*]; increase followed

by a gradual decline. The peak [Ca®*]; was 171 = 1
nM over baseline (Trace a). After cells were pretreated
with 25 ug/ml AC for 2 min, addition of bradykinin
induced a [Ca®*]; increase with a peak of 95 = 1 nM
(n = 5; trace b), which was smaller than Trace a by
44% (P < 0.05). The interaction of AC and bradykinin
on viability was explored. Fig. 4B shows that over-
night incubation with 10 nM bradykinin induced an
increase in viability by 8 + 1% (P < 0.05; n=5). Incu-
bation with 25 ug/ml AC and bradykinin increased
viability by 14 = 1% (P < 0.05; n = 5). Thus, AC en-
hanced the response of bradykinin by 6% (P < 0.05).

Fig. 5A shows that addition of histamine (1 uM)
induced an immediate [Ca?*]; increase followed by
a gradual decline. The peak [Ca®*]; was 114 + 1 nM
over baseline (Trace a). After cells were pretreated
with 25 ug/ml AC for 2 min, addition of histamine
induced a [Ca®*]; increase with a peak of 50 = 1 nM
(n = 5; Trace b), which was smaller than Trace a by
56% (P < 0.05). The interaction of AC and histamine
on viability was explored. Fig. 5B shows that over-
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Fig. 3. Effect of AC on ATP-induced increases in [Ca®*]; and
lack of effect on viability. (A) Trace a: ATP (10 uM)
was added at 25 sec. Trace b: AC (25 ug/ml) was added
to cells 2 min before Ca>* measurements. ATP was
added at 25 sec. (B) Cells were exposed to vehicle,
AC (25 pg/ml), ATP (10 uM) or AC + ATP overnight
before viability was measured by WST-1 assays. Data
are means + SEM of the five experiments. *P < 0.05
compared to control.

night incubation with 1 uM histamine induced an
increase in viability by 20 = 5% (P < 0.05; n = 5).
Incubation with 25 ug/ml AC and histamine in-
creased viability by 8 + 3% (P < 0.05; n =5). Thus,
AC inhibited the response of histamine by 12% (P <
0.05).

We next examined the effect of a different type
of Ca®* mobilizer: thapsigargin, an exogenous com-
pound that increased [Ca%*]; via inhibition of endo-
plasmic reticulum Ca?* pumps (9), on [Ca**]; and
viability. Fig. 6A shows that addition of thapsigargin
(1 uM) induced a [Ca®*]; increase followed by a
gradual decline. The maximum [Ca?*]; was 55 = | nM
over baseline (Trace a). After cells were pretreated
with 25 ug/ml AC for 2 min, addition of thapsigargin
induced a [Ca?*]; increase with a maximum of 28 = |
nM (n = 5; Trace b), which was smaller than trace a by
44% (P < 0.05). The interaction of AC and thapsi-
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Fig. 4. Effect of AC on bradykinin-induced increases in [Ca®*];
and viability. (A) Trace a: bradykinin (10 nM) was added
at 30 sec. Trace b: AC (25 ug/ml) was added to cells
2 min before Ca** measurements. Bradykinin was added
at 30 sec. (B) Cells were exposed to vehicle, AC (25
ug/ml), bradykinin (10 nM) or AC + bradykinin over-
night before viability was measured by WST-1 assays.
Data are means = SEM of the five experiments. *P <
0.05 compared to control. *P < 0.05 compared to the
3rd bar.

gargin on viability was explored. Fig. 6B shows that
overnight incubation with 1 uM thapsigargin induced
a decrease in viability by 24 + 1% (P < 0.05; n = 5).
Incubation with 25 ug/ml AC and 1 uM thapsigar-
gin decreased viability by 19 = 1% (P < 0.05; n = 5).
Thus, AC reversed the cytotoxic response of thapsi-
gargin by 7% (P < 0.05). Previous studies have
shown that activation of MAPKSs is related to apoptosis
(26, 34). Thus experiments were performed to explore
whether AC alters the phosphorylation of ERK, JNK
and p38 MAPK. Fig. 7A shows that the level of
phosphorylated ERK (phospho-ERK) significantly
increased at 3, 10, 30-120 min after addition of 200
ug/ml AC. Exposure to AC seemed to increase the
intensity of phosphorylated JNK (phospho-JNK) at
60 min (Fig. 7B); and the intensity of phosphorylated
p38 MAPK (phospho-p38 MAPK) was not detected
(Fig. 7C).
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Fig. 5. Effect of AC on histamine-induced increase in [Ca®*);
and viability. (A) Trace a: histamine (1 uM) was added
at 25 sec. Trace b: AC (25 ug/ml) was added to cells
2 min before Ca>* measurements. Histamine (1 uM)
was added at 25 sec. (B) Cells were exposed to vehicle,
AC (25 nug/ml), histamine (1 uM) or AC + histamine
overnight before viability was measured by WST-1
assays. Data are means + SEM of the five experiments.
#P < 0.05 compared to control. *P < 0.05 compared to
the 3rd bar.

Discussion

The data suggest that AC exerts a dual effect on
the viability of OC2 cells. At lower concentrations
AC may enhance cell proliferation, whereas at higher
concentrations it may cause cell death. Interestingly,
AC was shown to prevent PC12 cells from apoptosis
(15, 22) but induce apoptosis in human hepatoma
cells (14, 32, 33), leukemia cells (12), and breast
cancer cells (37). Thus it appears that whether AC
stimulates or inhibits viability may depend on the
concentration of AC and the cell type. Flow cytometry
data suggested that AC induced apoptosis. This is
consistent with the apoptosis-inducing effect of AC
observed in other cell types (12, 14, 32, 33, 37). It
seems that AC induced apoptosis via Ca**-independent
pathways. Ca®* loading has been reported to evoke
apoptosis in most cell types (9), but Ca?*-unrelated
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Fig. 6. Effect of AC on thapsigargin-induced increases in
[Ca®*]; and decreases in viability. (A) Trace a: thapsi-
gargin (1 uM) was added at 25 sec. Trace b: AC (25
ug/ml) was added to cells 2 min before Ca?* measure-
ments. Thapsigargin (1 uM) was added at 25 sec. (B)
Cells were exposed to vehicle, AC (25 ug/ml), thapsi-
gargin (1 uM) or AC + thapsigargin overnight before
viability was measured by WST-1 assays. Data are
means = SEM of the five experiments. *P < (.05 com-
pared to control. *P < 0.05 compared to the 3rd bar.

apoptosis could also be seen in some cell types
including thymic lymphoma cells (23), neutrophils
(6), and beta cells (38).

The data suggested that ATP, bradykinin and
histamine all induced [Ca**]; increase and to facilitate
cell proliferation. Notably, although AC inhibited
[Ca®*]; increases induced by these three hormones,
it exerted distinctive effects on these hormones’
stimulatory actions on cell viability. AC had no ef-
fect on ATP’s action, but it enhanced bradykinin’s
action, and inhibited histamine’s action. These
hormones all activated cells via stimulating specific
receptors on cell surface leading to [Ca®*]; increases.
AC appeared to inhibit thapsigargin-induced [Ca**];
increases and to reverse thapsigargin-induced de-
crease in viability. Thapsigargin is thought to be a
apoptosis-promoting agent in many cell types in-
cluding PC12 cells (38), neuroblastoma cells (5), and
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thymocytes (2), etc. This study is the first to show
that thapsigargin induced apoptosis in oral cancer
cells and this effect could be prevented by AC.

The data suggested that AC at a concentration
that induced apoptosis also induced the phosphoryla-
tion of ERK and JNK in OC2 cells. This study is the
first to show that OC2 cells have ERK and JNK
MAPKSs, but have no p38 MAPK. The effect of AC on
MAPK phosphorylation is unclear in any model. We
are the first to provide evidence that AC may induce
the apoptosis of OC2 cells via inducing ERK and JNK
MAPKs. MAPKs are regulated by a characteristic
phosphorelay system in which a series of these protein
kinases phosphorylate and activate one another. The
ERKs function in the control of cell division, and
inhibitors of these enzymes are being explored as
anticancer agents. The JNKs are critical regulators
of transcription, and JNK inhibitors may be effective
in the control of rheumatoid arthritis (16-18, 28).
Thus the importance of ERK and JNK in OC2 cells
need to be further studied.

Together, we have demonstrated that in OC2
cells, AC exerted multiple effects on viability and
Ca’* levels, induced ERK and JNK phosphorylation,
and probably caused apoptosis.
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