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Abstract

Respiratory function of mitochondria is compromised in aging human tissues and severely
impaired in the patients with mitochondrial disease.  A wide spectrum of mitochondrial DNA (mtDNA)
mutations has been established to associate with mitochondrial diseases.  Some of these mtDNA
mutations also occur in various human tissues in an age-dependent manner.  These mtDNA mutations
cause defects in the respiratory chain due to impairment of the gene expression and structure of
respiratory chain polypeptides that are encoded by the mitochondrial genome.  Since defective
mitochondria generate more reactive oxygen species (ROS) such as  O2

–  and H2O2 via electron leak,
we hypothesized that oxidative stress is a contributory factor for aging and mitochondrial disease.
This hypothesis has been supported by the findings that oxidative stress and oxidative damage in
tissues and culture cells are increased in elderly subjects and patients with mitochondrial diseases.
Another line of supporting evidence is our recent finding that the enzyme activities of Cu,Zn-
SOD, catalase and glutathione peroxidase (GPx) decrease with age in skin fibroblasts.  By contrast,
Mn-SOD activity increases up to 65 years of age and then slightly declines thereafter.  On the other
hand, we observed that the RNA, protein and activity levels of Mn-SOD are increased two- to three-fold
in skin fibroblasts of the patients with CPEO syndrome but are dramatically decreased in patients
with MELAS or MERRF syndrome.  However, the other antioxidant enzymes did not change in the
same manner.  The imbalance in the expression of these antioxidant enzymes indicates that the
production of ROS is in excess of their removal, which in turn may elicit an elevation of oxidative stress
in the fibroblasts.  Indeed, it was found that intracellular levels of H2O2 and oxidative damage to DNA
and lipids in skin fibroblasts from elderly subjects or patients with mitochondrial diseases are significantly
increased as compared to those of age-matched controls.  Furthermore, Mn-SOD or GPx-1 gene
knockout mice were found to display neurological disorders and enhanced oxidative damage similar to
those observed in the patients with mitochondrial disease.  These observations are reviewed in this
article to support that oxidative stress elicited by defective respiratory function and impaired antioxidant
enzyme system plays a key role in the pathophysiology of mitochondrial disease and human aging.
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Introduction

Mitochondria are the power plant of the animal

and human cells.  They utilize more than 90% of
molecular oxygen consumed by tissue cells and a
small fraction of which become reactive oxygen
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species (ROS) due to incomplete reduction in aerobic
metabolism (1).  An increase in the production or
inefficient disposal of ROS will increase the odds that
intracellular components get oxidatively modified or
mutated as generally seen in nuclear and mitochondrial
DNA (mtDNA).  In the past decade, a number of
human diseases have been found to associate with
mutations in mtDNA (2-5).  Among them, A8344G
and A3243G transitions are detected in approximately
80% of the patients with myoclonic epilepsy and
ragged-red fibers (MERRF) (6) and mitochondrial
encephalomyopathy, lactic acidosis and stroke-like
episodes (MELAS) (7) syndromes, respectively.
Large-scale deletions of mtDNA frequently occur in
the affected tissues of patients with mitochondrial
myopathies such as chronic progressive external
ophthalmoplegia  (CPEO) and Kearns-Sayre
syndromes (2, 8).  Both point mutations and large-
scale deletions of mtDNA significantly affect
mitochondrial gene expression (9, 10) and result in
defects in the structure and function of respiratory
enzymes.  Impairment of mitochondrial electron
transport elicits an increased production of ROS and
free radicals in the mitochondria (11, 12).  Indeed,
human cells harboring mutant mtDNA or defective
mitochondria were found to accumulate higher levels
of ROS and oxidative damage (13-15).  It has been
documented that patients with mitochondrial diseases
exhibit premature aging (16) and their clinical
symptoms are progressively worsening with time (17-
19).  This age-related progression of the disease is
quite similar to the natural course of some types of
neurodegenerative diseases (20, 21).  However, it
remains unclear as to how the age-dependent decline
of the bioenergetic functions in the affected tissues of
the patient leads to mitochondrial disorders or
neurodegenerative diseases.

Under normal physiological  condit ions,
superoxide anion (  O2

– ), hydroxyl radical (HO.) and
hydrogen peroxide (H2O2) are continuously produced
in tissue cells as by-products of aerobic metabolism
(1, 4).  More than 500 liters of oxygen is utilized daily
by tissue cells of a normal human subject, and 1-5%
of the oxygen consumed by the respiratory chain is
incompletely reduced to  O2

–  and H2O2 (1, 22).  If not
efficiently removed as that often occurs in the aging
process, HO. may be produced from H2O2 via
Fenton reaction in the presence of Fe2+ or Cu+ and
cause oxidative damage to cellular components,
including nucleic acids (23), proteins (24) and lipids
(25).

To cope with the oxidative stress elicited by
aerobic metabolism, animal and human cells have
developed a ubiquitous antioxidant defense system,
which consists of superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GPx) and

glutathione reductase together with a number of low-
molecular-weight antioxidants such as ascorbate, α-
tocopherol and glutathione (26, 27).  However, this
antioxidant defense system may be overwhelmed by
various pathological or environmental factors so that
a fraction of ROS may escape destruction and form
the far more reactive hydroxyl radicals (26, 27).  An
increase in ROS-elicited oxidative damage to DNA
and other biomolecules may impair normal functions
of tissue cells and lead to human aging and disease
(23, 26).

Mitochondria are the Major Intracellular
Producer of ROS

Mitochondria are the intracellular organelles
responsible for biological oxidation of various fuel
molecules at the final stage of aerobic metabolism
in the animal and human cells.  They are also the
major producers of ROS via incomplete reduction
of O2 by the electrons leaked out of the electron
transport chain.  NADH-coenzyme Q oxidoreductase
(Complex I) and ubiquinol-cytochrome c reductase
(Complex III) of the respiratory chain are the major
sites that generate ROS in mitochondria (22, 28).
Ubisemiquinone and flavosemiquinone radicals
and ROS are continually generated and maintained at
relatively high steady-state levels in mitochondria.
Respiratory inhibitors that block the electron transport
at Complex I or Complex III have been demonstrated
to increase intracellular levels of  O2

–  and H2O2 (29).  It
has been demonstrated that the rate of production
of  O2

–  and H2O2 in mitochondria increases with age
in various tissues of the animal (30).  In addition,
the mitochondria isolated from skeletal muscle, heart
and brain of mice lacking the heart/muscle isoform
of the adenine nucleotide translocase produced
larger amounts of ROS (31).  These results support
the general idea that impairment of the respiratory
function leads to an increase in the amounts of ROS
and free radicals generated by mitochondria (32,
33).  Although antioxidant enzymes together with
other antioxidants can dispose of ROS and free
radicals, a fraction of them may escape these defense
mechanisms and cause oxidative damage to various
cellular constituents in the aging or disease tissues
(34).  An excess production of ROS is harmful to
human cells, and any defects that lead to the
overproduction of ROS will cause a catastrophe
culminating in cell dysfunction or cell death.  We
have thus proposed that mtDNA mutation-elicited
defects in the respiration and oxidative phospho-
rylation system result in an increase of oxidative
stress and oxidative damage in the affected tissues of
elderly subjects or the patients with mitochondrial
disease (Figure 1).



OXIDATIVE STRESS IN AGING AND MITOCHONDRIAL DISEASE 3

Oxidative Damage to Mitochondria

While utilizing more than 90% of the oxygen
uptake of the animal and human cells, mitochondria
are subjected to direct attack by ROS generated by the
respiratory chain during aerobic metabolism.  Ames
and coworkers (35) first demonstrated that the
oxidative damage in mtDNA is much more extensive
than that in nuclear DNA.  They showed that the
content of 8-hydroxy 2'-deoxyguanosine (8-OHdG),
an index product of oxidative damage to DNA, in
mtDNA was significantly higher than that in nuclear
DNA in the rat liver.   The 8-OHdG level in mtDNA
of 24-month old rats was about three times higher

than that of 3-month young rats.  Other investigators
showed that the levels of 8-OHdG in mtDNA and
oxidized glutathione of various animal tissues are
concurrently increased with age (36, 37).  Moreover,
the 8-OHdG content in mtDNA also increases in an
age-dependent manner in human heart and brain (38,
39).  Recently, we showed that the 8-OHdG levels in
the skin and lung tissues and skin fibroblasts of
elderly subjects were significantly higher than the
corresponding values of young subjects (40, 41).

Being very rich in polyunsaturated fatty acids,
mitochondrial inner membranes are prone to lipid
peroxidation, which has been shown to increase with
age in mitochondria of the somatic tissues of rodents
and humans (42, 43).  Lipid peroxidation is one of the
major biochemical events leading to the deleterious
effects of ROS and free radicals.   We have
demonstrated that mitochondrial lipid peroxidation is
enhanced in various human tissues in the aging process
(40, 43, 44).  This may alter the fluidity and other
biophysical properties of mitochondrial membranes
and impair biochemical functions of various
transporters and respiratory enzymes in the inner and
outer membranes of mitochondria.  It has been shown
that cardiolipin, a unique phospholipid localized
almost exclusively in the inner membrane of
mitochondria ,  i s  par t icular ly  vulnerable  to
peroxidative damage due to its high content of
unsaturated fatty acids (45).  Since cardiolipin is
essential for the normal function of cytochrome c
oxidase and several anion carriers of the inner
mitochondrial membrane, peroxidative damage to this
phospholipid will inevitably impair the bioenergetic
function of mitochondria.  Indeed, it was found that a
loss of cardiolipin and decline of cytochrome c oxidase
activity occur concurrently with lipid peroxidation of
the mitochondrial membrane (46).  Recently,
cardiolipin was demonstrated to be required for the
specific binding of cytochrome c to mitochondrial
inner membrane (47).  Oxidative modification of
cardiolipin abolishes its binding to cytochrome c,
which  i s  then  de tached and re leased  f rom
mitochondria.  This oxidative alteration not only
impairs electron transport function of the mitochondria
but also induces apoptosis of the cell under oxidative
stress (48).

On the other hand, mitochondrial proteins are
also vulnerable to oxidative modification in aging.  It
was demonstrated that aconitase, a Kreb cycle enzyme
in the mitochondrial matrix, is a specific target of
ROS (49) and that the protein carbonyl content of
adenine nucleotide translocase in the mitochondrial
inner membrane of muscle tissues is increased with
age of the housefly (50).  In addition, the iron-sulfur
centers of the respiratory enzymes (e.g., succinate
dehydrogenase and NADH dehydrogenase) are prone

Fig. 1. A schematic illustration of the mitochondrial role in human aging
and mitochondrial disease.  Under normal physiological condition,
1-5% of the oxygen is converted to the reactive oxygen species
(ROS) and free radicals due to incomplete reduction by one-
electron transfer reactions in mitochondria.  They are usually
disposed of by the coordinate function of the antioxidant defense
system consisting of free radical scavenging enzymes SOD, GPx
and CAT together with a number of small-molecular-weight
antioxidants.  If escaped, they may cause oxidative damage
(strand breakage and base modification) and mutation to mtDNA
molecules that are attached, at least transiently, to the inner
membranes.  The mtDNAs with oxidative damage or mutation
are transcribed and translated to produce defective protein
subunits, which are assembled to form defective electron trans-
port chain (ETC).  The impaired ETC is not only inefficient in
ATP synthesis but also generates more ROS via electron leak,
which may further enhance oxidative damage to various
biomolecules in mitochondria.  This “vicious cycle” is being
operated and accelerated in an age-dependent manner, and re-
sults in the widely observed aging-associated accumulation of
oxidative damage and mutation of mtDNA, which ultimately
results in progressive decline in the bioenergetic function of
tissue cells in the aging process.  On the other hand, the functions
of free radical scavenging enzymes and other repair systems are
progressively declined and thus oxidative damage to various
biomolecules are gradually accumulated during aging in somatic
tissues.  As a result, aging and mitochondrial diseases will be
manifested in the affected tissues of the elderly subjects or
mitochondrial disease patients due to insufficient energy supply,
enhanced oxidative stress and profound oxidative damage.
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to oxidative modification and the electron transport
function of mitochondria may be impaired by ROS
under oxidative stress.

Mitochondrial Role in Aging

The fact that mitochondria are the major
generators and direct targets of ROS in the tissue cells
has led us and other investigators to foster the idea
that oxidative stress and oxidative damage in
mitochondria are contributory factors to aging.  In
recent years, abundant experimental data have been
accumulated to support the idea that mitochondrial
function declines in human aging and degenerative
diseases (33, 51).  The bioenergetic function of
mitochondria is decreased with age in the postmitotic
cells (e.g., brain, heart and muscle) of the human and
animals (33, 52).  In 1989, we first reported that
glutamate-malate-supported respiration and the
electron transport activities of Complexes I and IV
were more dramatically declined with age (53).  Since
ten polypeptides constituting these two respiratory
enzyme complexes are encoded by mtDNA, we
conjectured that mutations in mtDNA cause the age-
dependent decline in the respiratory function of
mitochondria.  This notion was supported by the fact
that an increasing number of point mutations, deletions
and tandem duplications of mtDNA increase with age
(54-56).  The mtDNA molecules with 4,977 bp and
other deletions have been found to increase
exponentially with age in various human tissues (57-
59).  Two point mutations in mtDNA have also been
reported to accumulate in aging human muscle (55,
60), although Pallotti et al. (61) failed to find a causal
correlation between point mutations of mtDNA and
age in the group of their study subjects.  It is now
generally accepted that mtDNA mutations are
increased with age, but the proportion of each of the
aging-associated mutated mtDNAs is generally less
than five percent of total mtDNA in a cell (62).  Thus,
it was argued as to how such low levels of mutated
mtDNA bring about significant decline of the
bioenergetic function of mitochondria (63, 64).
Several investigators have suggested that the reported
mtDNA mutations are just the tip of the iceberg of the
aging-associated alterations in the mitochondrial
genome (51, 54).  In fact, it has been shown that a
wide spectrum of deletions of mtDNA occurs and
accumulates in the muscle of the aged individual (65).
Recently, Michikawa et al. (66) reported that a T414G
transversion in the D-loop of mtDNA is accumulated
at 20-50% of the total mtDNA in the skin fibroblasts
from elderly subjects.  This mutation is located at the
control region of mtDNA and may impair the
replication and transcription of mtDNA in tissue cells
of the elderly human subjects.  Furthermore, Hayakawa

et al. (67) reported a wide array of fragmentation of
mtDNA into 358 different sizes in human heart muscle.
It is worth noting that a host of large-scale deletions
in mtDNA is accumulated in aging skeletal muscle
and that the amount of full-length mtDNA amplifiable
by extra-long PCR markedly decreased with age (68).
Therefore, the total amount of mtDNA molecules
with a deletion may reach such a high level that
m i t o c h o n d r i a l  r e s p i r a t i o n  a n d  o x i d a t i v e
phosphorylation are severely impaired (69).  Indeed,
muscle fibers with very low activity of cytochrome c
oxidase were found in skeletal and heart muscles
from elderly subjects (70, 71).  Moreover, high levels
of mutant mtDNA molecules were found in the
cytochrome c oxidase-deficient muscle fibers (65, 71,
72).  Accumulation of multiple mtDNA deletions,
along with a concurrent decrease of the wild-type
mtDNA, was found to correlate with the decrease of
cytochrome c oxidase activity in aging skeletal muscle
(72).  Recently, we found that mtDNA mutation and
oxidative DNA damage are concurrently increased in
the aging human lung and skin (40, 41).  Taken
together, these findings clearly suggest a strong
correlation between the decline of bioenergetic
function of mitochondria and mutation of mtDNA in
aging human tissues.

Age-associated Alterations in Antioxidant
Defense System

A number of investigators has reported that
endogenous levels of antioxidant enzymes (except
fo r  Mn-SOD)  and  smal l -molecu la r -we igh t
antioxidants in tissues are negatively correlated with
the maximum lifespan potential of mammals and
primates (73, 74).  It is generally established that the
gradual loss of the capability of animals to cope with
oxidative stress is one of the characteristics of aging
(75).   Orr and Sohal (76) reported that transgenic
Drosophila melanogaster overexpressing both CAT
and Cu,Zn-SOD had about 33% longer lifespan as
compared to the control.  However, overexpression of
Cu,Zn-SOD or CAT alone had only a minimal effect
on the average lifespan and no effect on the maximum
lifespan of the fruit fly (77).  Recently, it was found
that ubiquitous overexpression of Cu,Zn-SOD alone
in mice does not extend the lifespan of the animal
(78).  This implies that efficient removal of ROS by
coordinate expression of antioxidant enzymes is
essential for longevity of D. melanogaster.  It is well
established that the animals that have lower rates of
metabolism and mitochondrial production of ROS
usually live longer (30, 75-77).  However, past
investigations on the influence of aging on antioxidant
enzymes in the human and animals have resulted in
conflicting results (73, 79-81) (Table 1).  Aging-
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associated changes in antioxidant defense systems
appear to depend on species, sex and the type of the
tissue examined (73, 79, 82).  It was argued that age-
associated increases in the activities of some free
radical scavenging enzymes of tissue cells can be
counterbalanced by the decreases of some others, so
that the overall antioxidant capacity of the tissue cells
may not be significantly affected in aging of the
animal and human (27).  This explanation seems
attractive but is not supported by our recent findings
described below.

The abilities of human cells to respond to
endogenous and exogenous oxidative stress may be
compromised by alterations of gene expression of
antioxidant enzymes (83, 84).  An imbalance of the
free radical scavenging enzymes is thought to enhance
oxidative stress and elicit oxidative damage to tissue
cells during the aging process (83).  Recently, we
demonstrated that the activities of Cu,Zn-SOD, CAT
and GPx in human skin fibroblasts were decreased
significantly with age (41).  However, the activity of

Mn-SOD was increased with age before 65 years but
was mildly decreased thereafter.  These non-parallel
changes may induce an imbalance in the intracellular
levels of prooxidants and antioxidants, which in turn
elevates oxidative stress and increases oxidative
damage in skin fibroblasts.  Indeed, we found that the
specific contents of lipid peroxides (measured as
malondialdehyde) and 8-OHdG in human tissues are
increased in an age-dependent manner (40, 41, 44).
This is consistent with the findings that reduced
glutathione level is declined (36) and ROS and 8-
OHdG levels are increased in animal mitochondria in
an age-dependent manner (30, 36).   In another study,
we found that Mn-SOD activity was increased with
age but GPx and CAT activities did not show
significant changes in human skeletal muscle (84).
These results support our working hypothesis that
alterations in the activities of free radical scavenging
enzymes play an important role in the age-related
increase of oxidative stress in human tissues.  It is
worth pointing out that the generally observed age-

Table 1. The Changes between Free Radical Scavenging Enzymes in Different Tissues of Patients with Mitochon-
drial Diseases and Elderly Subjects

Subjects Tissues Cu, Zn− Mn-SOD CAT GPx References
SOD

CPEO Muscle 0 ↑ − − 85c

CPEO Skeletal ↑ ↑ − − 86c

muscle
CPEO Skin − ↑ 0 0 93a,c

fibroblast
KSS Skeletal ↑ ↑ − − 86c

muscle
MELAS Muscle 0 ↑ − − 85c

MELAS Myoblast ↑ ↑ ↑ − 91c

MERRF Blood ↓ ↓ − − 89c

CC Skin − ↑ − − 14b,c

fibroblast
FILA Skin − ↑ − − 80c

fibroblast
Elderly Lung 0 0 ↑ ↓ 80c

subjects
Liver ↑ ↑ 0 ↓ 80c

Skeletal ↓ ↑ 0 0 34c

muscle
Skin ↓ ↑ ↓ ↓ 41c, 93a,c

fibroblast

Symbols: ↑ , increase; ↓ , decrease; 0, no change; −, not determined.  Abbreviations: CC, cardiomyopathy with cataract;
CPEO, chronic progressive external ophthalmoplegia; FILA, fatal infantile lactic acidosis; MELAS, mitochondrial
encephalomyopathy, lactic acidosis with stroke-like episodes syndrome; MERRF, myoclonic epilepsy with ragged-red
fibers syndrome; KSS, Kearns-Sayre syndrome.  The superscripts a, b, and c indicate the changes at the mRNA, protein,
and activity levels.
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dependent decline in small-molecular-weight
antioxidants in the plasma and tissues may further
aggravate the oxidative stress in the tissues of elderly
subjects.

Role of ROS in Mitochondrial Diseases

Mitochondrial diseases are a unique group of
human diseases that are mostly caused by defects in
the respiration and oxidative phosphorylation system
(3, 4).  They dominantly affect the tissues or organs of
high energy-demand, such as brain, heart and skeletal
muscle.  More than one hundred mtDNA mutations
have been established to associate with a wide
spectrum of mitochondrial disease (4, 21).  Some of
these mutations have been demonstrated to cause
dysfunction of the respiratory chain (9, 10) and in
turn lead to an increase of electron leak and over-
production of ROS in mitochondria (13-15).  Thus,
both impairment of respiratory function and increased
production of ROS have been attributed to the
pathophysiology of mitochondrial disease (19, 31).
In an early study, Piccolo et al. (17) found that lipid
peroxides and fluorescent adducts of organic aldehyde
with plasma proteins are elevated in blood cells of the
patients with CPEO syndrome.  Moreover, the skeletal
muscle with a significant increase of 8-OHdG content
and higher immunohistochemical staining for Mn-
SOD displayed more pronounced appearance of
ragged-red fibers (mainly caused by over-proliferation
of abnormal mitochondria) in the patients with KSS
or CPEO syndrome (85).  Luo et al. (15) demonstrated
that there was an increase of hydroxyl radicals and
aldehydic lipid peroxidation products in skin

fibroblasts from patients with Complex I deficiency.
It has been established that enhanced oxidative stress,
caused by impairment of the respiratory function of
mitochondria (85, 86) or by targeted disruption of the
Mn-SOD gene (87), may cause neuromuscular
disorders that are similar to those seen in the patients
with mitochondrial diseases (88).  Recent studies in
this and other laboratories have provided evidence to
support that increase of endogenous oxidative stress
elicited by impairment of the respiratory chain in the
affected tissues of the patients plays an important role
in the pathogenesis and progression of mitochondrial
diseases (19, 41, 86, 88).

Alteration of Antioxidant Enzyme System in
Mitochondrial Diseases

It has been known for some time that the
activities of free radical scavenging enzymes are
altered in the affected tissues of patients with
mitochondrial diseases (Table 1).  Antioxidant defense
system is impaired and oxidative damage to DNA is
enhanced in skeletal muscle of the patients with
mitochondrial encephalomyopathies (85, 86, 89).  The
skeletal muscle displaying ragged-red fibers in the
patients with CPEO and MELAS syndromes showed
an increase in the expression of Mn-SOD but not of
Cu,Zn-SOD (85).  In the patients with CPEO
syndrome, it was found that Mn-SOD-positive muscle
fibers predominantly exhibited decreased activity of
cytochrome c oxidase.  On the other hand, Mitsui et
al. (86) found that the cytochrome c oxidase-negative
ragged-red fibers had elevated levels of Mn-SOD and
Cu,Zn-SOD in the patients with KSS and CPEO

Table 2. Comparison of the Activities and RNA Levels of Free Radical Scavenging Enzymes in the Skin Fibroblasts
from CPEO and MERRF Patients with Those of the Age-matched Healthy Subjects

MnSOD Catalase GPx
Fibroblasts

Enzyme activity RNA level Enzyme activity RNA level Enzyme activity RNA level

CPEO  (n=6) 267.8±54.2* 0.63±0.13* 14.3±3.3 0.68±0.17 39.6±6.2 0.54±0.02
MERRF (n=3)   32.2±15.3* 0.05±0.02*   7.7±1.3* 0.19±0.13* 63.9±9.7 0.63±0.13
Control (n=18) 130.9±38.9 0.23±0.08 13.5±3.20 0.73± 0.12 47.3±10.8 0.51±0.11

The data for the enzyme activities were obtained from three independent experiments and are expressed as mean±SD.  The
superscript “*” indicates significant difference (p < 0.01) in the free radical scavenging enzyme activity and RNA levels
of skin fibroblasts between the patients and control.  Values for mRNAs of free radical scavengers Mn-SOD, catalase and
GPx were normalized with the level of β-actin RNA.  Control data were obtained from the skin fibroblasts of 18 healthy
subjects between 25 and 70 years old, who provided skin tissues for cell culture.  The fibroblasts examined were between
three and six population doublings.  The fibroblasts were established from the skin biopsies of the CPEO and MERRF
patients and subjects who were ruled out of having any of the known mitochondrial diseases.  The figures presented in this
table are compiled from the original data in the Ph.D. thesis of Ching-You Lu (ref. 93), and part of which has been published
(ref. 41).
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syndromes.  The 8-OHdG level in cellular DNA of
these muscle fibers was significantly higher than that
of the normal control.  Defects in Complex I have
been identified in some patients with fatal infantile
lactic acidosis, cardiomyopathy, hepatopathy with
tubulopathy, Leigh syndrome and those with lactic
acidemia (14, 16, 90).  It was found that the severity
of cytochrome c oxidase deficiency was correlated
with the increase of production of  O2

–  and induction of
mRNA of the MnSOD gene, and that the rate of  O2

–

production was decreased by the induction of Mn-
SOD gene expression (14).  This kind of adaptive (or
compensatory) response of antioxidant enzymes was
also observed in cultured myoblasts from three
MELAS patients harboring 20% to 40% of mtDNA
with the A3243G mutation (91).  Barrientos and
Moraes (92) developed several xenomitochondrial
cybrids with 40% deficiency in Complex I and 143B
cells with impaired Complex I activity caused by
different concentrations of rotenone, an inhibitor
acting at Complex I.  They found that the respiration-
deficient cybrids and rotenone-treated 143B cells all
exhibited retarded growth, declined respiratory
function and lower mitochondrial membrane potential
accompanied by an elevation of ROS production and
increased lipid peroxidation.

Recently, we cultured skin fibroblasts from nine
patients with CPEO syndrome for the study of free
radical scavenging enzymes.  We found that the skin
fibroblasts from the patients all had significantly
higher enzyme activity and mRNA level of Mn-SOD
but those of CAT and GPx were not increased or even
decreased (ref. 93 and Table 2).  Western blot analysis
revealed similar imbalance in protein levels of these
antioxidant enzymes in fibroblasts.  These results
indicate an imbalance between the H2O2 generation
and disposal systems in the fibroblasts from the
patients with CPEO syndrome.  We confirmed this by
the finding that fibroblasts from CPEO patients
contained 2-3 fold higher levels of H2O2, which was
measured on a flow cytometer after staining the
fibroblasts with DCFH-DA.  Moreover, we found that
such an imbalance of free radical scavenging enzymes
is more pronounced in myoblasts than in skin
fibroblasts of the CPEO patients.  It is important to
note that the oxidative damage to DNA in muscle of
CPEO patients is much more extensive than that of
patients with other types of diseases that are not
associated with neuromuscular disorders (93).  The
mean 8-OHdG/106dG ratio in the muscle DNA of the
CPEO patients was 50.4±23.8 (N=3), and that for the
age-matched healthy subjects was 6.3±0.2 (N=8).
The difference between the two groups was found to
be significant (p<0.05, Student t test).  On the other
hand, we also found that oxidative stress in skin
fibroblasts of the patients with MERRF syndrome is

higher than that of the age-matched controls (Table
2).  Brambilla et al. (94) reported that the Se-dependent
and -independent GPx activities are increased in
response to deficiency of respiratory enzymes in
human myeloid leukemia U937 cells after treatment
with chloramphenicol or ethidium bromide.  Taken
together,  these observations suggest  that  an
impairment or functional imbalance of free radical
scavenging enzymes plays an important role in the
pathogenesis and age-dependent progression of CPEO,
MERRF and MELAS syndromes and possibly of the
other mitochondrial diseases.

Pathological Consequences of Imbalance in
Antioxidant Enzymes

A fine balance between free radical scavenging
enzymes is important for the cellular resistance to
oxidative stress (83).  A low SOD relative to GPx and/
or CAT could lead to the accumulation of superoxide
anions.  On the other hand, a high SOD relative to GPx
and/or CAT may lead to an increased production of
H2O2.  Chen and Ames (95) found that senescence-
like growth arrest could be induced by H2O2 in human
diploid fibroblasts.  Therefore, any significant increase
in the SOD activity must be accompanied by a
comparable increase in CAT and/or GPx activity to
prevent excessive buildup of H2O2 in the cell.  Several
investigators studied the effects of overexpression of
SOD in several cell types including mouse L cells,
neuroblastoma cells, murine fibroblasts, mouse
epidermal cells and NIH/3T3 fibroblasts transfected
with the cDNA of human Cu,Zn-SOD (96-99).  The
transfectants overexpressing Cu,Zn-SOD alone were
more susceptible to DNA strand breaks, growth
retardation, easy killing by an extracellular burst of
cell  O2

–  and H2O2, and exhibited the feature of cell
senescence (98, 99).  Some clones showed adaptation
to Cu, Zn-SOD overproduction by an increase in GPx
or CAT activity and the double transfectants of CAT
and Cu,Zn-SOD or GPx were better protected from
oxidative damage.  Moreover, Li et al. (99) obtained
two Mn-SOD overexpressing clones by transfection
of NIH/3T3 mouse fibroblasts with the Mn-SOD
cDNA.  The two clones showed different sensitivities
to H2O2 and menadione and altered cell cycle
progression, resulting in an accumulation of cells in
G2/M phase and a decrease of cells in the mitotic
phase (99).  Furthermore, the cells overexpressing
Mn-SOD had higher intracellular level of H2O2 and
showed a 9.5-fold induction of mRNA of the matrix-
degrading metalloprotease-1, which has been shown
to be involved in the process of carcinogenesis and
aging (100).

The most striking pathological consequences of
elevation of ROS elicited by defects in the free radical
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scavenging enzymes were observed in the gene-knock-
out rodents (31, 101-104).  Melvo et al. (101, 102)
first discovered that mice lacking Mn-SOD developed
neurological disorders similar to those found in the
patients with certain mitochondrial diseases.  This
group has further demonstrated that genetic disruption
of the GPx-1 gene developed respiratory function
defects and enhanced oxidative stress in mice (104).
Recently, it was reported that the mean lifespan of
wild-type Caenorhabditis elegans was extended 44%
by treatment with two small synthetic antioxidants,
superoxide dismutase/catalase mimetics (105).  The
mimetics also normalized the lifespan of prematurely
aging worms harboring a mutation in the mev-1 gene
that encodes a mitochondrial electron transport protein
(culminating in a 67% increase of lifespan).  Since the
genes that are involved in the disposal of ROS are
highly conserved among eukaryotes, the biochemical
basis by which antioxidant enzymes affect lifespan in
invertebrates may also apply to higher animals and
humans (106).  These observations clearly indicate
that a defect or imbalance in any of the free radical
scavenging enzymes may cause pathological changes,
and that lifespan may be significantly shortened by
decreasing the antioxidant capacity of the human and
animals.

On the other hand, we have observed that the
intracellular levels of H2O2 in the skin fibroblasts of
the patients with CPEO or MERRF syndrome are
significantly higher than that of the normal fibroblasts
(93, 94).  This is easily explained by the findings that
Mn-SOD is up-regulated in CPEO skin fibroblasts but
is down-regulated in the fibroblasts of MERRF
patients.  Moreover, it was reported that serum levels
of vitamin E and coenzyme Q10 and SOD activity
were decreased in the patients with MELAS or MERRF
syndrome (89).  These and other lines of evidence
have led us to suggest that imbalance or defect in
antioxidant enzyme systems is an important causal
factor and contributes to premature aging and the
development of oxidative stress-elicited pathologies
of mitochondrial disorders (84).
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