Effect of Antidepressant Doxepin on Ca$^{2+}$ Homeostasis and Viability in PC3 Human Prostate Cancer Cells

Ti Lu$^{1, #}$, Chiang-Ting Chou$^{2, 3, #}$, Wei-Zhe Liang4, Chia-Cheng Yu5, Hong-Tai Chang5, Chun-Chi Kuo6, Wei-Chuan Chen7, Daih-Huang Kuo8, Chin-Man Ho8, Pochuen Shieh8, and Chung-Ren Jan4

1Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 81362
2Department of Nursing, Division of Basic Medical Sciences, Chang Gung Institute of Technology Chia-Yi 61363
3Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology Chia-Yi 61363
4Department of Medical Education and Research, Kaohsiung Veterans General Hospital Kaohsiung 81362
5Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362
6Department of Nursing, Tzu Hui Institute of Technology, Pingtung 92641
7Division of Surgery, St. Joseph Hospital, Kaohsiung 80288
8Department of Pharmacy, Tajen University, Pingtung 90741, Taiwan, Republic of China

Abstract

The effect of the antidepressant doxepin on cytosolic Ca$^{2+}$ concentrations ([Ca$^{2+}$]$_{i}$) and viability in PC3 human prostate cancer cells was explored. The Ca$^{2+}$-sensitive fluorescent dye fura-2 was applied to measure [Ca$^{2+}$]$_{i}$. Doxepin at concentrations of 500-1000 µM induced a [Ca$^{2+}$]$_{i}$ rise in a concentration-dependent manner. The response was reduced partly by removing Ca$^{2+}$. Doxepin-evoked Ca$^{2+}$ entry was suppressed by Ca$^{2+}$ entry blockers (nifedipine, econazole, SK&F96365), and protein kinase C (PKC) modulators. In the absence of extracellular Ca$^{2+}$, incubation with the endoplasmic reticulum Ca$^{2+}$ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) partly inhibit doxepin-induced [Ca$^{2+}$]$_{i}$ rise. Incubation with doxepin nearly inhibited thapsigargin or BHQ-induced [Ca$^{2+}$]$_{i}$ rise. Inhibition of phospholipase C (PLC) with U73122 failed to alter doxepin-induced [Ca$^{2+}$]$_{i}$ rise. At concentrations of 200-250 µM, doxepin killed cells in a concentration-dependent manner. This cytotoxic effect was not reversed by chelating cytosolic Ca$^{2+}$ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/PI staining data implied that doxepin (200 and 250 µM) did not induce apoptosis. Collectively, in PC3 cells, doxepin induced a [Ca$^{2+}$]$_{i}$ rise by evoking PLC-independent Ca$^{2+}$ release from stores including the endoplasmic reticulum and Ca$^{2+}$ entry via PKC-sensitive store-operated Ca$^{2+}$ channels. Doxepin caused cell death that was independent of [Ca$^{2+}$]$_{i}$ rises.

Key Words: Ca$^{2+}$, doxepin, endoplasmic reticulum, human prostate cancer cells, phospholipase C, protein kinase C
Introduction

Doxepin is a tricyclic antidepressant which might affect both serotonin and norepinephrine neurotransmission (36). The indications of doxepin are major depressive disorder, nocturnal enuresis, panic disorder, irritable bowel syndrome, migraine, chronic pain, neurolgia, and symptoms of attention-deficit/hyperactivity disorder (14). The effects of doxepin on histaminergic and 5-HT₃ receptors may be responsible for its sleep-improving effect (31). The most common side effects include dry mouth, sedation, constipation, increased appetite, and a rapid or irregular heartbeat.

The *in vitro* effect of doxepin is largely unclear. It has been shown that doxepin caused toxicity in dorsal root ganglion cells (16) and inhibited respiration of malignant glioma cells (18). Additionally, doxepin was shown to inhibit the HERG potassium channel (12), neuronal sodium channels (25), three subtypes of GABA transporter (24), cyclic AMP production (17), and monoamine oxidase (28). Regarding Ca²⁺ signaling, it has been shown that H1 histamine receptor antagonist doxepin inhibited the histamine-induced [Ca²⁺]ᵢ rise in Jurkat cells and cloned human T lymphocytes (23).

Ca²⁺ ions play a crucial role in different biological responses. A rise in intracellular free Ca²⁺ concentrations ([Ca²⁺]ᵢ) can initiate many pathophysiological cellular processes (1). However, a unregulated [Ca²⁺]ᵢ rise may cause ion flux, dysfunction of proteins, apoptosis, and proliferation, etc. (9). In order to explore the effect of doxepin on [Ca²⁺]ᵢ in cells, the PC3 human prostate cancer cells were chosen. The PC3 cell line is commonly applied for prostate cancer research. It has been shown that in this cell, [Ca²⁺]ᵢ can increase in response to the stimulation of various ligands such as MK-886 (19), desipramine (5), and safrole (4). Because doxepin may have pathophysiological effect in different cell types, our study was aimed to explore the effect of doxepin on PC3 cells.

Fura-2 was used as a fluorescent Ca²⁺-sensitive dye to measure [Ca²⁺]ᵢ changes in the present study. It was shown that doxepin induced both Ca²⁺ entry and Ca²⁺ release in PC3 cells. The [Ca²⁺]ᵢ rises were characterized, the concentration-response plots were established, and the pathways underlying doxepin-evoked Ca²⁺ entry and Ca²⁺ release were explored. The effect of doxepin on cell viability was investigated by using the tetrazolium assay. The involvement of apoptosis was explored by using Annexin V/propidium iodide staining.

Materials and Methods

Materials

The reagents for cell culture were from Gibco® (Gaithersburg, MD, USA). Fura-2/AM and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxymethyl (BAPTA/AM) were from Molecular Probes® (Eugene, OR, USA). Doxepin and all other reagents were from Sigma-Aldrich® (St. Louis, MO, USA) unless otherwise indicated. The concentrations chosen for nifedipine, econazole, SK&F96365, PMA, GF109203X, thapsigargin, BHQ, U73122, and ATP were based on literature and were effective in interacting with the targets of these chemicals.

Cell Culture

PC3 human prostate cancer cells, MG63 human osteosarcoma cells and DBTRG-05MG human glioblastoma cells obtained from Bioresource Collection and Research Center (Taiwan) were cultured in RPMI-1640 medium or Minimum Essential Medium (MEM) supplemented with 10% heat-inactivated fetal bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin.

Solutions Used in [Ca²⁺]ᵢ Measurements

Ca²⁺-containing medium (pH 7.4) had 140 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 2 mM CaCl₂, 10 mM HEPES, and 5 mM glucose. Ca²⁺-free medium contained similar components as Ca²⁺-containing medium except that CaCl₂ was omitted and 2 mM MgCl₂/0.3 mM ethylene glycol tetraacetic acid (EGTA) were added. Doxepin was dissolved in water as a 1 M stock solution. The other chemicals were dissolved in water, ethanol or dimethyl sulfoxide. The concentration of organic solvents in the solution used in experiments did not exceed 0.1%, and did not alter viability, basal [Ca²⁺]ᵢ, or apoptosis measurements.

[Ca²⁺]ᵢ Measurements

Confluent cells grown on 6 cm dishes were trypsinized and made into a suspension in culture medium at a density of 10⁶/ml. Cell viability was determined by trypan blue exclusion. The viability was usually greater than 95% after the treatment. Cells were subsequently loaded with 2 µM fura-2/AM for 30 min at 25°C in the same medium. After loading, cells were washed with Ca²⁺-containing medium twice and was made into a suspension in Ca²⁺-containing medium at a density of 10⁷/ml. Fura-2 fluorescence measurements were performed in a water-jacketed cuvette (25°C) with continuous stirring; the cuvette contained 1 ml of medium and 0.5 million cells. Fluorescence was monitored with a Shimadzu RF-5301PC spectrofluorophotometer immediately
after 0.1 ml cell suspension was added to 0.9 ml Ca\(^{2+}\)-containing or Ca\(^{2+}\)-free medium, by recording excitation signals at 340 nm and 380 nm and emission signal at 510 nm at 1-sec intervals. During the recording, reagents were added to the cuvette by pausing the recording for 2 sec to open and close the cuvette-containing chamber. For calibration of \([\text{Ca}^{2+}]_i\), after completion of the experiments, the detergent Triton X-100 (0.1%) and CaCl\(_2\) (5 mM) were added to the cuvette to obtain the maximal fura-2 fluorescence. Then the Ca\(^{2+}\) chelator *ethylene glycol tetraacetic acid* (10 mM) was added to chelate Ca\(^{2+}\) in the cuvette to obtain the minimal fura-2 fluorescence. \([\text{Ca}^{2+}]_i\) was calculated as previously described (6-8, 15). Cell viability remained >95% after 20 min of \([\text{Ca}^{2+}]_i\) measurements.

Cell Viability Assays

The measurement of cell viability was based on the ability of cells to cleave tetrazolium salts by dehydrogenases. Augmentation in the amount of live cells. Assays were performed according to manufacturer’s instructions designed for this assay (Roche Molecular Biochemical, Indianapolis, IN, USA). Cells were seeded in 96-well plates at a density of 10,000 cells/well in culture medium for 24 h in the presence of doxepin. The cell viability detecting reagent 4-[3-[4-iodophenyl]-2-(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzenedisulfonate] (WST-1; 10 \(\mu\)M pure solution) was added to samples after doxepin treatment, and cells were incubated for 30 min in a humidified atmosphere. In experiments using BAPTA/AM to chelate cytosolic Ca\(^{2+}\), cells were treated with 10 \(\mu\)M BAPTA/AM for 1 h prior to incubation with doxepin. The cells were washed once with Ca\(^{2+}\)-containing medium and incubated with/without doxepin for 24 h. The absorbance of samples \((A_{450})\) was determined using an enzyme-linked immunosorbent assay (ELISA) reader. Absolute optical density was normalized to the absorbance of unstimulated cells in each plate and expressed as a percentage of the control value.

Alexa Fluor 488 Annexin V/PI Staining for Detection of Apoptosis

Annexin V/PI staining assay (7, 37) was employed to further detect PC3 cells in early apoptosis/necrosis stages. Alexa Fluor® 488 Annexin V/Dead Cell Apoptosis Kit was from Molecular Probes® (Eugene, OR, USA). Cells were exposed to doxepin at several concentrations for 24 h. Cells were harvested after incubation and washed in cold phosphate-buffered saline (PBS). Cells were resuspended in 400 \(\mu\)l reaction solution with 10 mM of HEPES, 140 mM of NaCl, 2.5 mM of CaCl\(_2\) (pH 7.4). Alexa Fluor® 488 annexin V/PI staining solution was added in the dark. After incubation for 15 min, the cells were collected and analyzed in a FACScan flow cytometry analyzer. Excitation wavelength was at 488 nm and the emitted green fluorescence of Annexin V (FL1) and red fluorescence of PI (FL2) were collected using 530 nm and 575 nm band pass filters, respectively. A total of at least 20,000 cells were analyzed per sample. Light scatter was measured on a linear scale of 1024 channels and fluorescence intensity was on a logarithmic scale. The amount of early apoptosis and late apoptosis/necrosis were determined, respectively, as the percentage of Annexin V+/PI- or Annexin V+/PI+ cells.

Statistics

Data are reported as mean ± SEM of three separate experiments. Data were analyzed by one way analysis of variances (ANOVA) using the Statistical Analysis System (SAS®, SAS Institute Inc., Cary, NC, USA). Multiple comparisons between group means were performed by post-hoc analysis using the Tukey’s HSD (honestly significantly difference) procedure. A P-value less than 0.05 was considered significant.

Results

Effect of Acute Treatment with Doxepin on \([\text{Ca}^{2+}]_i\) in PC3 Cells but not in MG63 Cells and DBTRG-05MG Cells

The effect of doxepin on basal \([\text{Ca}^{2+}]_i\) was examined. Fig. 1A shows that the basal \([\text{Ca}^{2+}]_i\) level was 51 ± 2 nM. At concentrations between 500 and 1000 \(\mu\)M, doxepin induced a \([\text{Ca}^{2+}]_i\) rise in a concentration-dependent manner in Ca\(^{2+}\)-containing medium. At a concentration of 1000 \(\mu\)M, doxepin evoked a \([\text{Ca}^{2+}]_i\) rise that attained to a net increase of 80 ± 2 nM \((n = 3)\) followed by a slow decay. The Ca\(^{2+}\) response saturated at 1000 \(\mu\)M doxepin because 1250 \(\mu\)M doxepin did not evoke a greater response. Fig. 1B shows that in the absence of extracellular Ca\(^{2+}\), 1000 \(\mu\)M doxepin induced a \([\text{Ca}^{2+}]_i\) rise of 55 ± 2 nM; and at a concentration of 750 \(\mu\)M, doxepin induced a \([\text{Ca}^{2+}]_i\) rise of 40 ± 2 nM. Fig. 1C shows the concentration-response plots of doxepin-induced responses. The \(EC_{50}\) value was 400 ± 2 \(\mu\)M or 760 ± 2 \(\mu\)M in the presence or absence of external Ca\(^{2+}\) by fitting to a Hill equation. Fig. 1D shows that doxepin between 100 \(\mu\)M and 1000 \(\mu\)M did not evoke a \([\text{Ca}^{2+}]_i\) rise in other cell types including MG63 cells and DBTRG-05MG cells.
Effect of Doxepin on Prostate Cancer Cells

Effect of \(\text{Ca}^{2+} \) Channel Modulators on Doxepin-Induced \([\text{Ca}^{2+}]_i\) Rise

Fig. 1 shows that doxepin-induced \(\text{Ca}^{2+} \) response saturated at 1000 \(\mu \text{M} \); thus in the following experiments the response induced by 1000 \(\mu \text{M} \) doxepin was used as control. Experiments were conducted to explore the \(\text{Ca}^{2+} \) entry pathway of the doxepin-induced \([\text{Ca}^{2+}]_i\) rise. The store-operated \(\text{Ca}^{2+} \) entry inhibitors: nifedipine (1 \(\mu \text{M} \)), econazole (0.5 \(\mu \text{M} \)) and SK&F96365 (5 \(\mu \text{M} \)); phorbol 12-myristate 13 acetate (PMA; 1 nM; a protein kinase C activator); and GF109203X (2 \(\mu \text{M} \); a protein kinase C (PKC) inhibitor) were applied 1 min before doxepin. Addition of these chemicals (nifedipine, econazole, SK&F96365, PMA, GF109203X) alone did not alter baseline \([\text{Ca}^{2+}]_i\); (data not shown). These agents all significantly inhibited doxepin-induced \([\text{Ca}^{2+}]_i\) rise to different degree (Fig. 2).

Intracellular Store for Doxepin-Induced \(\text{Ca}^{2+} \) Release

Previous studies have shown that the endoplasmic reticulum is the major \(\text{Ca}^{2+} \) store in PC3 cells (4, 9). Fig. 3A shows that in \(\text{Ca}^{2+} \)-free medium, addition of 1000 \(\mu \text{M} \) doxepin induced a \([\text{Ca}^{2+}]_i\) rise of 50 ± 2 nM. Thapsigargin (1 \(\mu \text{M} \)), an inhibitor of endoplasmic reticulum \(\text{Ca}^{2+} \) pumps (32) was added afterwards. Thapsigargin failed to evoke a \([\text{Ca}^{2+}]_i\) rise (n = 3). Fig. 3B shows that addition of thapsigargin induced a \([\text{Ca}^{2+}]_i\) rise of 15 ± 2 nM (n = 3) which was 10% smaller in the peak value (\(P < 0.05 \)) than the control doxepin-induced response shown in Fig. 3A. To confirm the thapsigargin’s data, another endoplasmic reticulum \(\text{Ca}^{2+} \) pump inhibitor 2,5-di-tert-butyldihydroquinone (BHQ) (35) was used in similar experiments. Fig. 3C shows that BHQ added after doxepin induced a tiny transient \([\text{Ca}^{2+}]_i\) rise. Fig. 3D
shows that BHQ induced a $[Ca^{2+}]_i$ rise of 45 ± 1 nM. Fig. 3D further shows that addition of doxepin after BHQ evoked a $[Ca^{2+}]_i$ rise of 40 ± 1 nM which was smaller than the control doxepin-induced response by 20%.

Lack of a Role of Phospholipase C (PLC) in Doxepin-Induced Ca^{2+} Release

PLC-dependent production of inositol 1,4,5-trisphosphate is a key process for releasing Ca^{2+} from the endoplasmic reticulum (1). Because doxepin released Ca^{2+} from the endoplasmic reticulum, the role of PLC in this event was examined. U73122, a PLC inhibitor (33), was used to see whether the activation of this enzyme was required for doxepin-induced Ca^{2+} release. It has been shown that ATP influenced biological processes via P2X purinoreceptors (3). P2X purinoreceptors are agonist-gated ion channels, while several P2Y receptors activate intracellular Ca^{2+} stores (2). Previous studies showed that ATP was used as a PLC-dependent agonist of $[Ca^{2+}]_i$ rise via P2X purinoreceptors in PC3 cells (3, 21). Therefore this study chose ATP to examine the role of PLC in PC3 cells. Fig. 4A shows that ATP (10 µM) induced a $[Ca^{2+}]_i$ rise.

Fig. 2. Effect of Ca^{2+} channel modulators on doxepin-induced $[Ca^{2+}]_i$ rise. In blocker- or modulator-treated groups, the reagent was added 1 min before doxepin (1000 µM) in Ca^{2+}-containing medium. The concentration was 1 µM for nifedipine, 0.5 µM for econazole, 5 µM for SK&F96365, 10 nM for phorbol 12-myristate 13-acetate (PMA), and 2 µM for GF109203X. Data are expressed as the percentage of control (1st column) that is the maximum value of 1000 µM doxepin-induced $[Ca^{2+}]_i$ rise, and are mean ± SEM of three separate experiments. *P < 0.05 compared to the 1st column.

Fig. 3. Intracellular Ca^{2+} stores of doxepin-induced Ca^{2+} release. Experiments were performed in Ca^{2+}-free medium. Doxepin (1000 µM), thapsigargin (1 µM) and BHQ (50 µM) were added at time points indicated. Data are mean ± SEM of three separate experiments.
rise of 51 ± 2 nM. Fig. 4B shows that incubation with 2 µM U73122 did not change basal [Ca²⁺], but abolished ATP-induced [Ca²⁺] rise. This suggests that U73122 effectively suppressed PLC activity. Fig. 4B also shows that incubation with 2 µM U73122 did not alter basal [Ca²⁺], or doxepin-induced [Ca²⁺] rise. U73343 (2 µM), a U73122 analogue, failed to have an inhibition on ATP-induced [Ca²⁺] rise (not shown).

Fig. 4. Effect of U73122 on doxepin-induced Ca²⁺ release. Experiments were performed in Ca²⁺-free medium. (A) ATP (10 µM) was added as indicated. (B) U73122 (2 µM), ATP (10 µM), and doxepin (1000 µM) were added as indicated. Data are mean ± SEM of three separate experiments.

Fig. 5. Doxepin-induced Ca²⁺-independent cell death. (A) Following BAPTA/AM treatment, cells were incubated with fura-2/AM as described in Methods. Then [Ca²⁺], measurements were conducted in Ca²⁺-containing medium. Doxepin (500-1000 µM) was added as indicated. (B) Cells were treated with 0-250 µM doxepin for 24 h, and the cell viability assay was performed. Data are expressed as percentage of control that is the increase in cell numbers in doxepin-free groups. Control had 10,925 ± 712 cells/well before experiments, and had 13,951 ± 788 cells/well after incubation for 24 h. *P < 0.05 compared to control. In each group, the Ca²⁺ chelator BAPTA/AM (10 µM) was added to cells followed by treatment with doxepin in Ca²⁺-containing medium. Cell viability assay was subsequently performed. *P < 0.05 compared to control. **P < 0.05 compared to the pairing group.
Effect of Doxepin on Cell Viability

Given that acute incubation with doxepin induced a substantial and lasting \([\text{Ca}^{2+}]\text{i}\) rise, and that unregulated \([\text{Ca}^{2+}]\text{i}\) rise often alters cell viability (9), experiments were performed to examine the effect of doxepin on viability of PC3 cells. Cells were treated with 0-250 \(\mu\text{M}\) doxepin for 24 h, and the tetrazolium assay was performed. In the presence of 100 \(\mu\text{M}\) doxepin, cell viability increased by 30 ± 2%. In the presence of 200 or 250 \(\mu\text{M}\) doxepin, viability decreased in a concentration-dependent manner (Fig. 5).

Relationship between BAPTA/AM and Doxepin-Induced Changes in Viability

The next issue was whether the doxepin-induced changes in viability was caused by a preceding \([\text{Ca}^{2+}]\text{i}\) rise. The intracellular \(\text{Ca}^{2+}\) chelator BAPTA/AM (34) was used to prevent a \([\text{Ca}^{2+}]\text{i}\) rise during doxepin treatment. Previous studies showed that BAPTA/AM pre-treatment at 10 \(\mu\text{M}\) abolished \([\text{Ca}^{2+}]\text{i}\) rises in different cell types (10). In our study, Fig. 5A shows that 10 \(\mu\text{M}\) BAPTA/AM loading for 1 h abolished 1000 \(\mu\text{M}\) doxepin-induced \([\text{Ca}^{2+}]\text{i}\) rise in \(\text{Ca}^{2+}\)-containing medium. Furthermore, 10 \(\mu\text{M}\) BAPTA/AM loading for 25 h also had the same results (data not shown). Therefore This suggests that BAPTA/AM effectively prevented a rise in \([\text{Ca}^{2+}]\text{i}\) during doxepin treatment. Fig. 5B shows that 10 \(\mu\text{M}\) BAPTA/AM loading did not alter the control value of cell viability. BAPTA/AM loading did not reverse doxepin-induced changes in cell viability.

A Role of Apoptosis in Doxepin-Induced Cell Death

Because the cytotoxic response was most significant between 200 \(\mu\text{M}\) and 250 \(\mu\text{M}\) doxepin, these concentrations were chosen for apoptotic experiments. Annexin V/propidium iodide staining was applied to detect apoptotic cells after doxepin treatment. Figs. 6A
and 6B show that treatment with 200 µM or 250 µM doxepin did not induce significant apoptosis in PC3 cells.

Discussion

The effect of doxepin on Ca\(^{2+}\) signaling in cells has not been explored in any cell types. Our study shows that doxepin induced a [Ca\(^{2+}\)]\(_{i}\) rise in PC3 human prostate cancer cells and examined the underlying mechanisms. This is the first report to show that doxepin increases [Ca\(^{2+}\)]\(_{i}\) in a cultured cell model. The data show that doxepin induced a concentration-dependent [Ca\(^{2+}\)]\(_{i}\) rise by depleting intracellular Ca\(^{2+}\) stores and causing Ca\(^{2+}\) entry from extracellular solution because removing extracellular Ca\(^{2+}\) partly decreased doxepin-induced [Ca\(^{2+}\)]\(_{i}\) rise. In PC3 cells, about 66% of 1000 µM doxepin-evoked [Ca\(^{2+}\)]\(_{i}\) rise was caused by Ca\(^{2+}\) release. In contrast, our data show that doxepin at a concentration of up to 1000 µM did not induce a [Ca\(^{2+}\)]\(_{i}\) rise in MG63 cells and DBTRG-05MG cells. This suggests that doxepin-induced rise in [Ca\(^{2+}\)]\(_{i}\) in PC3 cells is a noteworthy phenomenon.

The mechanism of doxepin-induced Ca\(^{2+}\) influx was explored. The results implicate that doxepin might induce Ca\(^{2+}\) influx via triggering store-operated Ca\(^{2+}\) entry, which is caused by depletion of intracellular Ca\(^{2+}\) stores (26), based on the inhibition of doxepin-induced [Ca\(^{2+}\)]\(_{i}\) rise by nifedipine, econazole and SK&F96365. So far there are no selective blockers for this type of Ca\(^{2+}\) entry. These three compounds have often been applied to inhibit store-operated Ca\(^{2+}\) entry in different cell types (20, 22, 27, 29). Because activation of PLC produces IP3 and diacylglycerol, which stimulates PKC, the effect of regulation of PKC activity on doxepin-induced [Ca\(^{2+}\)]\(_{i}\) rise was examined. Both activation and inhibition of PKC inhibited doxepin-induced [Ca\(^{2+}\)]\(_{i}\) rise. This suggests that a normal PKC activity is required for a full scale doxepin-induced [Ca\(^{2+}\)]\(_{i}\) signal.

Regarding the Ca\(^{2+}\) stores involved in doxepin-induced Ca\(^{2+}\) release, the thapsigargin/BHQ-sensitive endoplasmic reticulum stores might be the dominant store because thapsigargin/BHQ pretreatment both greatly inhibited doxepin-induced [Ca\(^{2+}\)]\(_{i}\) rise; and conversely, doxepin pretreatment also inhibited thapsigargin/BHQ-induced Ca\(^{2+}\) release. Since thapsigargin/BHQ treatment did not abolish doxepin-induced Ca\(^{2+}\) release, doxepin may release Ca\(^{2+}\) not only from endoplasmic reticulum, but also from other stores such as mitochondria, lysosomes, cytoskeleton, etc. However, it is difficult to explore this possibility because so far there are no chemicals to selectively release Ca\(^{2+}\) from these stores. It seems that PLC-dependent pathways did not play a significant role in doxepin-induced Ca\(^{2+}\) release, since the response was not inhibited when PLC activity was inhibited. Thus it appears that doxepin-induced Ca\(^{2+}\) release was caused by a PLC-independent Ca\(^{2+}\) release from the stores. The identity of this Ca\(^{2+}\) release is unclear. It is possible that doxepin could mimic thapsigargin/BHQ by inhibiting endoplasmic reticulum Ca\(^{2+}\) pump.

Doxepin has been shown to induce cell death in cultured dorsal root ganglion cells and malignant glioma (16, 18). This study shows that doxepin had a dual effect on viability of PC3 cells. At 100 µM, doxepin induced a 30% increase in viability. At higher concentrations of 200 and 250 µM doxepin, viability was decreased in a concentration-dependent manner.

It appears problematic that 1000 µM doxepin was required to induce a full blown [Ca\(^{2+}\)]\(_{i}\) rise, while 250 µM doxepin already caused death of 70% of cells. Note that [Ca\(^{2+}\)]\(_{i}\), measurements and viability were two totally different assays. [Ca\(^{2+}\)]\(_{i}\) measurements were conducted online and terminated within 4-15 min. After 20 min incubation with doxepin, cell viability was still >95%. In contrast, in viability assays, cells were treated with doxepin overnight in order to obtain measurable changes in viability. This is why 250 µM doxepin decreased cell viability in the tetrazolium assay by 70% whereas 1000 µM doxepin did not alter viability in [Ca\(^{2+}\)]\(_{i}\), measurements.

Because doxepin induced both [Ca\(^{2+}\)]\(_{i}\), rises and cell death, it would be interesting to know whether the death occurred in a Ca\(^{2+}\)-dependent manner. Chelation of cytosolic Ca\(^{2+}\) with BAPTA/AM did not reverse doxepin-induced changes in cell viability. Indeed, chelation of cytosolic Ca\(^{2+}\) even antagonized doxepin’s action. This implies that in this case, doxepin’s effect on cell viability was not downstream to a [Ca\(^{2+}\)]\(_{i}\) rise. However, a Ca\(^{2+}\) signal can modulate cell viability in many cell types (9). It has been shown that Ca\(^{2+}\)-independent cell death could be found in some cell types such as macrophages (11) and human ovarian carcinoma cells (30). Although 250 µM doxepin caused cell death by 65% in viability experiments, the same concentration of doxepin did not induce significant apoptosis. Because Annexin V/PI staining showed a very low percentage of apoptotic cells (3%), it appears that cell membrane was not disrupted. Doxepin induced cell death as indicated by the tetrazolium assay; however, this is not accompanied by the uptake of Annexin V/PI in the 24 h assay. Thus it is possible that the significant loss of cell viability was through other pathways such as autophagy.

Due to the rather high (hundreds of µM) concentrations of doxepin needed to induce a [Ca\(^{2+}\)]\(_{i}\), rise and cell death, one logic concern is the clinical significance of our data. A previous study explored the plasma concentration of doxepin after oral administration. The doses administered were 25 and
75 mg/day in healthy adults. No BioResponse (BR) doxepin-related adverse effects were reported at doses up to 75 mg. A single 25 mg dose of BR-doxepin resulted in a mean C_{max} of ~200 µM after 4 h. A single 75 mg dose of BR-doxepin resulted in a mean C_{max} of ~400 µM after 4 h. BR-doxepin was well tolerated at single doses of up to 75 mg (13). However, in depression patients, the plasma concentration of doxepin after oral administration might be 2-fold higher than in healthy adults. Thus, our study may have clinical relevance.

Collectively, the results show that the antidepressant doxepin induced Ca^{2+} release from stores including endoplasmic reticulum in a PLC-independent manner and also caused Ca^{2+} influx via a PKC-dependent, store-operated Ca^{2+} entry in PC3 human prostate cancer cells. Doxepin also evoked cell proliferation or death depending on the concentration. This effect was independent of [Ca^{2+}]* rises. The possible effect on Ca^{2+} signaling and viability should be considered in performing other in vitro studies using doxepin.

Acknowledgments

This work was supported by grants from Kaohsiung Veterans General Hospital (VGHKS101-019) to Chung-Ren Jan, VGHKS13-CT5-08 and VGHKS100-115 to T Lu, and PS101001 to Wei-Chuan Chen.

The authors report no declarations of interest.

References

